First name(s): |
Y. |
Last name(s): |
Huang |
|
|
Authors associated with the Cyclotron Institute are underlined, and those associated with Center of Excellence in Nuclear Training And University-based Research (CENTAUR) have a * next to their name.
Experimental investigation of abnormal transverse flow enhancement of $\alpha$ particles in heavy-ion collisions, Y. Huang, W. Lin, H. Zheng, R. Wada, A. Bonasera*, Z. Chen, J. Han, R. Han, M. Huang, K. Hagel, T. Keutgen, X. Liu, Y. G. Ma, C. W. Ma, Z. Majka, G. Qu, L. Qin, P. Ren, G. Tian, J. Wang, Z. Yang and J. B. Natowitz, Phys. Rev. C 104, 044611 (2021)
|
pub id: 1174 [DOI] [URL]
|
Probing the neutron-proton asymmetry dependence of the nuclear source temperature with light charged particles, Y. Huang, W. Lin, H. Zheng, R. Wada, X. Liu, G. Qu, M. Huang, P. Ren, J. Han, M. R. D. Rodrigues, S. Kowalski, T. Keutgen, K. Hagel, M. Barbui, A. Bonasera* and J. B. Natowitz, Phys. Rev. C 101, 064603 (2020)
|
pub id: 1005 [DOI] [URL]
|
Nuclear temperature and its dependence on the source neutron-proton asymmetry deduced using the Albergo thermometer, Y. Huang, H. Zheng, R. Wada, X. Liu, W. Lin, G. Qu, M. Huang, P. Ren, J. Han, A. Bonasera*, K. Hagel, M. R. D. Rodrigues, S. Kowalski, T. Keutgen, M. Barbui and J. B. Natowitz, Phys. Rev. C 103, 014601 (2021)
|
pub id: 1090 [DOI] [URL]
|
Abnormal flow of $\alpha$ particles in heavy-ion collisions at intermediate energies, G. Qu, Y. Huang, D. Peng, Z. Xu, W. Lin, H. Zheng, G. Tian, R. Han, C. Ma, M. Huang, P. Ren, J. Han, Z. Yang, X. Liu and R. Wada, Phys. Rev. C 103, 044607 (2021)
|
pub id: 1109 [DOI] [URL]
|
Determining the nuclear temperature dependence on source neutron-proton asymmetry in heavy-ion reactions at intermediate energy*, Guofeng Qu, Y. Huang, Hua Zheng, Xing-Quan Liu, R. Wada, Wei-Ping Lin, Meirong Huang, Jifeng Han, Pei-Pei Ren, Zhenlei Yang, Xin Zhang and Qiangzhong Leng, Chinese Physics C 47, 054002 (2023)
|
pub id: 1293 [DOI] [URL]
|
Determining impact parameters of heavy-ion collisions at low-intermediate incident energies using deep learning with convolutional neural networks, X. Zhang, X. Liu, Y. Huang, W. Lin, H. Zheng, R. Wada, A. Bonasera*, Z. Chen, L. Chen, J. Han, R. Han, M. Huang, Q. Hu, Q. Leng, C. W. Ma, G. Qu, P. Ren, G. Tian, Z. Xu, Z. Yang and L. Zhang, Phys. Rev. C 105, 034611 (2022)
|
pub id: 1214 [DOI] [URL]
|