Keywords:
Publications of A. M. Mukhamedzhanov sorted by first author
Authors associated with the Cyclotron Institute are , and those associated with Center of Excellence in Nuclear Training And University-based Research (CENTAUR) have a * next to their name.
A
Corrigendum: Balmer emission induced by proton impact on atomic hydrogen (2019 J. Phys. B: At. Mol. Opt. Phys. 52 105701), , , , , and , Journal of Physics B: Atomic, Molecular and Optical Physics 53, 139501 (2020) | pub id: 1036 [DOI] [URL] |
Balmer emission induced by proton impact on atomic hydrogen, , , , , and , Journal of Physics B: Atomic, Molecular and Optical Physics 52, 105701 (2019) | pub id: 1065 [DOI] [URL] |
One-center close-coupling approach to two-center rearrangement collisions, , , , and , Journal of Physics B: Atomic, Molecular and Optical Physics 53, 145201 (2020) | pub id: 1028 [DOI] [URL] |
Astrophysical reaction rate for $^{17}\mathrm{F}(p,\gamma$)$^{18}\text{Ne}$ from the transfer reaction $^{13}\text{C}(^{17}\text{O},^{18}\text{O})^{12}\text{C}$, , , , , , , , , , , and , Phys. Rev. C 89, 025809 (2014) | pub id: 74 [DOI] [URL] |
Constraining the $6.05~\mathrm{MeV}$ $0^+$ and $6.13~\mathrm{MeV}$ $3^-$ Cascade Transitions in the $^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$ Reaction Using the Asymptotic Normalization Coefficients, , *, , , , , , , and , Phys. Rev. Lett. 114, 071101 (2015) | pub id: 143 [DOI] [URL] |
The $^{10}\mathrm{B}(^7\mathrm{Be},^{8}\mathrm{B})^9\mathrm{Be}$ Reaction and the $^{7}\mathrm{Be}(p,\gamma)^8\mathrm{B}$ ${S}$ Factor, , , , , , , , and , Phys. Rev. Lett. 82, 3960--3963 (1999) | pub id: 86 [DOI] [URL] |
B
Proton-beam stopping in hydrogen, , , , and , Phys. Rev. A 99, 042701 (2019) |
pub id: 884 [DOI] [URL] |
Status on $^{12}\mathrm{C}+^{12}\mathrm{C}$ fusion at deep subbarrier energies: impact of resonances on astrophysical $S^*$ factors, , and , The European Physical Journal A 56, 2 (2020) | pub id: 986 [DOI] [URL] |
Pigmy resonances, transfer, and separable potentials, , , , , and , in: Exotic Nuclei and Nuclear/Particle Astrophysics (VI). Physics with small accelerators: Proceedings of Carpathian Summer School of Physics 2016 (CSSP16), AIP Conference Proceedings 1852, Sinaia, Romania, pages 020004, 2017 | pub id: 674 [DOI] [URL] |
The cosmological lithium problem revisited, , and , in: Latin American Symposium on Nuclear Physics and Applications, AIP Conference Proceedings 1753, Medellin, Colombia, pages 040001, 2016 | pub id: 638 [DOI] [URL] |
Determination of asymptotic normalization coefficients for the channel $^{16}\mathrm{O}\rightarrow\alpha+^{12}\mathrm{C}$. II. Excited states $^{16}\mathrm{O}(3^-,2^+,1^-)$, , , and , The European Physical Journal A 59, 4 (2023) | pub id: 1323 [DOI] [URL] |
Determination of asymptotic normalization coefficients for the channel $^{16}\mathrm{O}\rightarrow\alpha+{}^{12}\mathrm{C}$: excited state $^{16}\mathrm{O}(0^+;6.05~\mathrm{MeV})$, , , and , The European Physical Journal A 58, 1 (2022) | pub id: 1305 [DOI] [URL] |
New method of analytic continuation of elastic-scattering data to the negative-energy region, and asymptotic normalization coefficients for $^{17}$O and $^{13}$C, , , and , Phys. Rev. C 100, 024627 (2019) |
pub id: 947 [DOI] [URL] |
Extrapolation of scattering data to the negative-energy region. III. Application to the $p-^{16}\mathrm{O}$ system, , , and , Phys. Rev. C 98, 064610 (2018) | pub id: 865 [DOI] [URL] |
Extrapolation of scattering data to the negative-energy region. II. Applicability of effective range functions within an exactly solvable model, , , and , Phys. Rev. C 97, 024602 (2018) |
pub id: 773 [DOI] [URL] |
Extrapolation of scattering data to the negative-energy region, , , and , Phys. Rev. C 95, 044618 (2017) | pub id: 657 [DOI] [URL] |
New approach to folding with the Coulomb wave function, , , and , Journal of Mathematical Physics 56, 052102 (2015) | pub id: 185 [DOI] [URL] |
Anomalous asymptotics of radial overlap functions for bound systems of three or more particles, , and , The European Physical Journal A 49, 1--13 (2013) | pub id: 411 [DOI] |
Electron- and photon-impact atomic ionisation, , , , , and , Physics Reports 520, 135 - 174 (2012) | pub id: 442 [DOI] [URL] |
Experimental study of the $^{18}\mathrm{O}(d,p)^{19}\mathrm{O}$ reaction and the ANC Method, , , , , , , , , , , , , , , , , , and , in: 11th International Conference on Nucleus-Nucleus Collisions (NN2012), Journal of Physics: Conference Series 420, San Antonio, Texas, pages 012142, 2013 | pub id: 317 [DOI] [URL] |
C
Determination of the astrophysical factor of the $^3\mathrm{He}(\alpha,\gamma)^7\mathrm{Be}$ down to zero energy using the asymptotic normalization coefficient method, , , , , *, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and , in: 28th International Nuclear Physics Conference (INPC 2022), Journal of Physics: Conference Series 2586, Cape Town South Africa, pages 012093, {IOP} Publishing, 2023 | pub id: 1337 [DOI] [URL] |
G
Low-energy ${R}$-matrix fits for the $^{6}\mathrm{Li}(d,\alpha)^{4}\mathrm{He}$ ${S}$ factor, , , , and , Phys. Rev. C 91, 014601 (2015) | pub id: 311 [DOI] [URL] |
Assessing the near threshold cross section of the $^{17}\mathrm{O}(n,\alpha)^{14}\mathrm{C}$ reaction by means of the Trojan horse method, , , , , , , , , , , , , , , and , Phys. Rev. C 95, 025807 (2017) | pub id: 602 [DOI] [URL] |
Application of the Trojan Horse Method to study neutron induced reactions: the $^{17}\mathrm{O}(n,\alpha)^{14}\mathrm{C}$ reaction, , , , , , , , , , , , , , , , , , , , , , , , , , , , , and , in: INPC 2013 – International Nuclear Physics Conference, EPJ Web of Conferences 66, Firenze, Italy, pages 07008, 2014 | pub id: 379 [DOI] |
Suppression of the centrifugal barrier effects in the off-energy-shell neutron + $^{17}\mathrm{O}$ interaction, , , , , , , , , , , , , , , , , , , , , , , , , , , , , and , Phys. Rev. C 87, 012801(R) (2013) | pub id: 248 [DOI] [URL] |
H
Impact of the $^7\mathrm{Be}(\alpha,\gamma)^{11}\mathrm{C}$ Reaction on the Primordial Abundance of $^7\mathrm{Li}$, , , , and , The Astrophysical Journal 862, 62 (2018) | pub id: 825 [DOI] [URL] |
K
Astrophysical $S$-factor for the $^3\mathrm{He}(\alpha,\gamma)^7\mathrm{Be}$ reaction via the asymptotic normalization coefficient ({ANC}) method, , , , , *, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and , Physics Letters B 807, 135606 (2020) | pub id: 1040 [DOI] [URL] |
Indirect determination of the astrophysical $S$ factor for the $^6\mathrm{Li}(p,\gamma)^7\mathrm{Be}$ reaction using the asymptotic normalization coefficient method, , , , , *, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and , Phys. Rev. C 104, 015807 (2021) | pub id: 1142 [DOI] [URL] |
L
Updated THM Astrophysical Factor of the $^{19}\mathrm{F}(p,\alpha)^{16}\mathrm{O}$ Reaction and Influence of New Direct Data at Astrophysical Energies, , , , , , and , The Astrophysical Journal 805, 128 (2015) | pub id: 186 [DOI] [URL] |
Measurement of the 20 and 90~keV Resonances in the $^{18}\mathrm{O}(p,\alpha)^{15}\mathrm{N}$ Reaction via the Trojan Horse Method, , , , , , , , , , , , , , , , , , , , , , and , Phys. Rev. Lett. 101, 152501 (2008) | pub id: 82 [DOI] [URL] |
Reaction rate of the $^{13}\mathrm{C}(\alpha,n)^{16}\mathrm{O}$ neutron source using the ANC of the $-3~\mathrm{keV}$ resonance measured with the THM, , , , , *, , , , , , , , , and , in: Nuclear Physics in Astrophysics VI (NPA6), Journal of Physics: Conference Series 665, Lisbon, Portugal, pages 012013, 2016 | pub id: 516 [DOI] [URL] |
On the Measurement of the $^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{O}$ ${S}$-factor at Negative Energies and its Influence on the $s$-process, , , , , *, , , , , , , , , and , The Astrophysical Journal 777, 143 (2013) | pub id: 316 [DOI] [URL] |
Measurement of the $-3~\mathrm{keV}$ Resonance in the Reaction $^{13}\mathrm{C}(\alpha,n)^{16}\mathrm{O}$ of Importance in the $s$-Process, , , , , *, , , , , , , , , and , Phys. Rev. Lett. 109, 232701 (2012) | pub id: 327 [DOI] [URL] |
Measurement of the $^{13}\mathrm{C}(\alpha, n)^{16}\mathrm{O}$ reaction at astrophysical energies using the Trojan Horse Method. Focus on the $-3~\mathrm{keV}$ sub-threshold resonance, , , , , *, , , , , , , , , and , in: INPC 2013 – International Nuclear Physics Conference, EPJ Web of Conferences 66, EDP Sciences, Firenze, Italy, pages 07010, 2014 | pub id: 155 [DOI] [URL] |
M
Determination of the asymptotic normalization coefficients for $^{14}\mathrm{C} + n\rightarrow{}^{15}\mathrm{C}$, the $^{14}\mathrm{C}(n,\gamma)^{15}\mathrm{C}$ reaction rate, and evaluation of a new method to determine spectroscopic factors, , , , , , , , , , , , , , and , Phys. Rev. C 89, 044605 (2014) | pub id: 100 [DOI] [URL] |
Proton 0.01 MeV resonance width and low-energy $S$ factor of $p+^{10}\mathrm{B}$ fusion, , Phys. Rev. C 108, 054603 (2023) | pub id: 1344 [DOI] [URL] |
Resonances in low-energy nuclear processes and nuclear astrophysics and asymptotic normalization coefficients: a review, , The European Physical Journal A 59, 56 (2023) | pub id: 1299 [DOI] [URL] |
Status of deep subbarrier $^{12}\mathrm{C}+^{12}\mathrm{C}$ fusion and advancing the Trojan horse method, , The European Physical Journal A 58, 6 (2022) | pub id: 1223 [DOI] [URL] |
Connection between asymptotic normalization coefficients and resonance widths of mirror states, , Phys. Rev. C 99, 024311 (2019) | pub id: 878 [DOI] [URL] |
Three-body Faddeev equations in two-particle Alt-Grassberger-Sandhas form with distorted-wave-Born-approximation amplitudes as effective potentials, , Phys. Rev. C 98, 044626 (2018) |
pub id: 860 [DOI] [URL] |
Coulomb renormalization and ratio of proton and neutron asymptotic normalization coefficients for mirror nuclei, , Phys. Rev. C 86, 044615 (2012) | pub id: 328 [DOI] [URL] |
Asymptotic normalization coefficients in nuclear reactions and nuclear astrophysics, and , The European Physical Journal A 58, 29 (2022) | pub id: 1204 [DOI] [URL] |
Asymptotic normalization coefficients for $\alpha+^{12}\mathrm{C}$ synthesis and the $S$ factor for $^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$ radiative capture, , , , , and , Phys. Rev. C 110, 055803 (2024) | pub id: 1383 [DOI] [URL] |
Generalized Faddeev equations in the Alt-Grassberger-Sandhas form for deuteron stripping with explicit inclusion of target excitations and Coulomb interaction, , and , Phys. Rev. C 86, 034001 (2012) | pub id: 329 [DOI] [URL] |
Theory of surrogate nuclear and atomic reactions with three charged particles in the final state proceeding through a resonance in the intermediate subsystem, and , Few-Body Systems 60, 9 (2019) | pub id: 893 [DOI] [URL] |
Trojan horse method as an indirect approach to study resonant reactions in nuclear astrophysics, , and , The European Physical Journal A 56, 44 (2020) | pub id: 1049 [DOI] [URL] |
Asymptotic normalization coefficients and radiative widths, and , Phys. Rev. C 92, 014625 (2015) | pub id: 182 [DOI] [URL] |
Surface-integral formalism of deuteron stripping, , , and , Phys. Rev. C 90, 034604 (2014) | pub id: 121 [DOI] [URL] |
Astrophysical factors of $^{12}\mathrm{C}+^{12}\mathrm{C}$ fusion extracted using the Trojan horse method, , and , Phys. Rev. C 99, 064618 (2019) |
pub id: 933 [DOI] [URL] |
Radiative capture reactions via indirect methods, and *, Phys. Rev. C 96, 045811 (2017) |
pub id: 757 [DOI] [URL] |
Subthreshold resonances and resonances in the $R$-matrix method for binary reactions and in the Trojan horse method, , and , Phys. Rev. C 96, 024623 (2017) |
pub id: 673 [DOI] [URL] |
Primordial $\alpha+d\rightarrow^6\mathrm{Li}+\gamma$ reaction and second lithium puzzle, , and , Phys. Rev. C 93, 045805 (2016) | pub id: 310 [DOI] [URL] |
Internal and external radiative widths in the combined $R$-matrix and potential-model formalism, , , and , Phys. Rev. C 95, 024616 (2017) | pub id: 603 [DOI] [URL] |
P
Optical model potential of ${A}=3$ projectiles for $1p$-shell nuclei, , and , Phys. Rev. C 91, 024611 (2015) | pub id: 123 [DOI] [URL] |
Asymptotic normalization coefficients and spectroscopic factors from deuteron stripping reactions, and , Phys. Rev. C 90, 044611 (2014) | pub id: 164 [DOI] [URL] |
Big bang nucleosynthesis revisited via Trojan Horse method measurements, , , , , , , , and , The Astrophysical Journal 786, 112 (2014) | pub id: 167 [DOI] [URL] |
Trojan Horse cross section measurements and their impact on primordial nucleosynthesis, , , , , , , and , in: XL Symposium on Nuclear Physics 2017, Journal of Physics: Conference Series 940, Cocoyoc, Morelos, México, pages 012017, {IOP} Publishing, 2018 | pub id: 839 [DOI] [URL] |
Updated evidence of the Trojan horse particle invariance for the $^{2}\mathrm{H}(d,p)^{3}\mathrm{H}$ reaction, , , , , , , , , and , Phys. Rev. C 87, 025805 (2013) | pub id: 252 [DOI] [URL] |
Trojan Horse particle invariance in fusion reactions, , , , , , , , and , in: VI International Conference FUSION14, EPJ Web of Conferences 86, EDP Sciences, New Delhi, India, pages 00034, 2015 | pub id: 165 [DOI] [URL] |
S
THM determination of the 65~keV resonance strength intervening in the $^{17}\mathrm{O}(p,\alpha)^{14}\mathrm{N}$ reaction rate, , , , , , , , , , , , , , , , , , , , and , in: Exotic Nuclei and Nuclear/Particle Astrophysics (V). from Nuclei to Stars: Carpathian Summer School of Physics 2014, AIP Conference Proceedings 1645, Sinaia, Romania, pages 392-396, 2015 | pub id: 188 [DOI] [URL] |
Improvement of the high-accuracy $^{17}\mathrm{O}(p,\alpha)^{14}\mathrm{N}$ reaction-rate measurement via the Trojan Horse method for application to $^{17}\mathrm{O}$ nucleosynthesis, , , , , , , , , , , , , , , , , , , , , , and , Phys. Rev. C 91, 065803 (2015) | pub id: 184 [DOI] [URL] |
Radiative nucleon capture with quasi-separable potentials, , , and , Journal of Physics G: Nuclear and Particle Physics 43, 125203 (2016) | pub id: 604 [DOI] [URL] |
Publisher's Note: Proton decay of excited states in $^{12}\mathrm{N}$ and $^{13}\mathrm{O}$ and the astrophysical $^{11}\mathrm{C}(p,\gamma)^{12}\mathrm{N}$ reaction rate, *, , , , , , , , , , , , , , , and , Phys. Rev. C 87, 069902 (2013) | pub id: 313 [DOI] [URL] |
Proton decay of excited states in $^{12}\mathrm{N}$ and $^{13}\mathrm{O}$ and the astrophysical $^{11}\mathrm{C}(p,\gamma)^{12}\mathrm{N}$ reaction rate, *, , , , , , , , , , , , , , , and , Phys. Rev. C 87, 054329 (2013) | pub id: 312 [DOI] [URL] |
Nuclear astrophysics and the Trojan Horse Method, , , , and , The European Physical Journal A 52, 1--9 (2016) | pub id: 314 [DOI] [URL] |
Measurement of the 10~keV resonance in the $^{10}\mathrm{B}(p,\alpha_0)^{7}\mathrm{Be}$ reaction via the Trojan Horse method, , , , , , , , , , , , , , , , , , , , , , , , , , , and , Phys. Rev. C 90, 035801 (2014) | pub id: 122 [DOI] [URL] |
Measurement of the $^{10}\mathrm{B}(p,{\alpha}_{0})^{7}\mathrm{Be}$ cross section from 5 keV to 1.5 MeV in a single experiment using the Trojan horse method, , , , , , , , , , , , , , , , , , , , , , , , , , , , , and , Phys. Rev. C 95, 035801 (2017) | pub id: 601 [DOI] [URL] |
The $^3\mathrm{He}+^5\mathrm{He}\rightarrow\alpha+\alpha$ reaction below the Coulomb barrier via the Trojan Horse Method, , , , , , , , , , , , , , , , , , , , , , , , , , , and , The European Physical Journal A 57, 20 (2021) | pub id: 1091 [DOI] [URL] |
T
Determination of the ${S}_{18}$ astrophysical factor for $^{8}\mathrm{B}(p,\gamma)^9\mathrm{C}$ from the breakup of $^9\mathrm{C}$ at intermediate energies, , , and , Phys. Rev. C 66, 035801 (2002) | pub id: 140 [DOI] [URL] |
Indirect techniques in nuclear astrophysics: a review, , , , and , Reports on Progress in Physics 77, 106901 (2014) | pub id: 315 [DOI] [URL] |
New determination of the $^2\mathrm{H}(d,p)^3\mathrm{H}$ and $^2\mathrm{H}(d,n)^3\mathrm{He}$ reaction rates at astrophysical energies, , , , , , , , , , , , , , , , , , and , The Astrophysical Journal 785, 96 (2014) | pub id: 166 [DOI] [URL] |
Nuclear Astrophysics from View Point of Few-Body Problems, , , and , Few-Body Systems 54, 869--875 (2013) | pub id: 443 [DOI] |
X
Overall Normalization of the Astrophysical ${S}$ Factor and the Nuclear Vertex Constant for $^{7}\mathrm{Be}(p,\gamma)^8\mathrm{B}$ Reactions, , , , and , Phys. Rev. Lett. 73, 2027--2030 (1994) | pub id: 88 [DOI] [URL] |