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Abstract. Heavy ion experiments provide important data to test astrophysical models. The high density
equation of state can be probed in HI collisions and applied to the hot protoneutron star formed in core
collapse supernovae. The Parity Radius Experiment (PREX) aims to accurately measure the neutron
radius of 208Pb with parity violating electron scattering. This determines the pressure of neutron rich
matter and the density dependence of the symmetry energy. Competition between nuclear attraction and
coulomb repulsion can form exotic shapes called nuclear pasta in neutron star crusts and supernovae.
This competition can be probed with multifragmentation HI reactions. We use large scale semiclassical
simulations to study nonuniform neutron rich matter in supernovae. We find that the coulomb interactions
in astrophysical systems suppress density fluctuations. As a result, there is no first order liquid vapor
phase transition. Finally, the virial expansion for low density matter shows that the nuclear vapor phase
is complex with significant concentrations of alpha particles and other light nuclei in addition to free
nucleons.

PACS. 26.50.+x Nuclear physics aspects of supernovae – 26.60.+c Nuclear matter aspects of neutron
stars

1 Introduction

Most of the visible mass and energy of the universe is
in atomic nuclei. This suggests some common goals for
heavy ion (HI) research. We can study nuclear matter un-
der extreme conditions of density (both high and low),
temperature, size, and isospin. The insight gained from
this study can then be applied to: (1) the fundamental
behavior of many particle quantum systems such as cold
atoms in laboratory traps, (2) Quantum Chromodynamics
at high densities, and (3) compact objects in Astrophysics
such as neutron stars, supernovae, gamma ray bursts, ac-
cretion disks, and the origin of the chemical elements.

In this article we discuss links between HI and Astro-
physics. We need to extrapolate HI data to Astrophysical
conditions. First, one must extrapolate to longer times.
Core collapse Supernovae (SN) are giant stellar explo-
sions that produce neutron stars and chemical elements
and accelerate cosmic rays. In SN the core of a massive
star collapses in milliseconds. This is a remarkably short
time scale for a planet sized object that is more massive
then the sun. However a msec is 1020 fm/c! and very long
compared to the time scale of a few hundred fm/c for a
HI collision. Therefore, SN involve matter that has had
plenty of time to reach thermodynamic equilibrium, while
this is not always the case in HI collisions.

Second, one must extrapolate to larger systems. A neu-
tron star is a giant atom with a mass number of 1057 and
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an atomic number of 1056. It is about 10 km in radius, or
18 orders of magnitude larger then a conventional atomic
nucleus. For this nearly infinite system, coulomb interac-
tions play a crucial role and require charge neutrality be-
tween positively charged nuclear matter and a background
electron gas. Thus, one must consider the differences in
coulomb interactions of finite HI collisions compared to
those of an infinite system.

Third, one must extrapolate to larger isospin. Astro-
physical systems are often more neutron rich then the
heavy ions that are available in the laboratory. This ex-
trapolation depends on the symmetry energy. The symme-
try energy S(ρ) describes how the energy of nuclear mat-
ter rises when one moves away from equal numbers of neu-
trons and protons. The density dependence of S(ρ) is very
important for many astrophysical systems, and can be de-
termined from HI experiments [1]. Furthermore, future ex-
periments with more neutron rich radioactive beams may
provide additional information.

There are errors associated with these extrapolations.
Nevertheless, laboratory HI experiments provide real data
that can be used to place important constraints on many
Astrophysical models. Without the HI data, one may be
forced to use untested theoretical assumptions that have
large errors.

In this article, we discuss links between HI and Astro-
physics. Section II discusses the high density equation of
state (EOS) and its implications for neutron star struc-
ture and supernovae. Next, we consider the EOS at sub-
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nuclear densities. Section III discusses the Parity Radius
Experiment (PREX) to measure the neutron skin thick-
ness in 208Pb. This determines the density dependence of
the symmetry energy and the neutron matter EOS at low
densities. Section IV presents molecular dynamics simula-
tions of the non-uniform neutron rich matter in the inner
crusts of neutron stars. These nuclear pasta phases may be
closely related to multi-fragmentation in HI collisions. Fi-
nally, Section V discusses the nuclear matter liquid-vapor
phase transition in supernovae.

2 The High Density Equation of State

The equation of state (EOS) describes the pressure P of
nuclear matter as a function of density ρ, temperature T ,
and proton fraction Yp. Heavy ion experiments can probe
the EOS at high T and ρ and for proton fractions near
Yp ≈ 1/2. For example, flow observables can be used to
constrain the EOS with the help of semiclassical simu-
lations [2]. In addition, yields of other particles such as
Kaons can provide additional probes of the EOS [3].

Unfortunately, it does not appear possible to directly
produce cold dense matter in the laboratory. The energy
needed to produce high compression always seems to pro-
duce high temperatures because there is no way to get the
entropy out. Therefore Ref. [2] assumed the temperature
dependence of the EOS was that predicted by some simple
mean field models.

Neutron stars (NS), on the other hand, provide unique
probes of the EOS of cold dense matter. Although they are
formed hot in SN explosions, they have plenty of time to
cool via neutrino emission. Thus NS can probe new forms
of cold dense matter such as color superconductors that
may not be accessible in the laboratory.

It is an exciting time to study neutron stars [4]. Power-
ful X-ray telescopes such as Chandra and XMM-Newton
and other instruments are slowly turning NS from theo-
retical curiosities to detailed, well observed, worlds. Some
NS in binary systems have well measured masses near 1.4
M⊙. However there are now indications of more massive
stars [4,5]. The structure of a neutron star depends only on
the EOS of cold neutron rich matter. The stiffer the EOS
(higher pressure for given density), the larger the radius
R(M) of a NS, of given mass M . A typical neutron matter
EOS may give R(M) ≈ 11−12 km for M = 1.4M⊙, while
a stiff EOS could give R(M) ≈ 13 − 14 km.

There is great interest in possible exotic phases for high
density matter. The central density of a NS can be sev-
eral times nuclear density. An exotic phase such as strange
matter or a color superconductor could lead to a soft high
density EOS. [If the exotic phase has a higher pressure
then conventional matter, it may not be thermodynami-
cally favored.] This could lead to a NS radius of 10 km or
less.

Astronomers are working hard to measure the radii of
NS, see for example [6]. One approach follows from ther-
modynamics and the properties of a blackbody radiator.
The luminosity L (total energy radiated per unit time) of

an isolated star is related to the surface temperature T
and apparent radius R as follows,

L = 4πR2σT 4 (1)

where σ is the Stephen Boltzmann constant. The surface
temperature can be deduced from X-ray spectra, while L
follows from the apparent magnitude of the star and an ac-
curate measurement of its distance. Unfortunately, there
are a number of complications with this simple formula.
Neutron stars are not perfect black bodies, so corrections
from realistic stellar atmosphere models may need to be
included. Interstellar absorption can influence estimates
of both L and T . The temperature may not be uniform
over the stars surface. For example T can be larger at
the magnetic poles compared to the equator because the
thermal conductivity is larger along the magnetic field di-
rection. The distance to the star may depend on a very
delicate measurement of parallax. Finally, gravity is so
strong that the curvature of space is important. Some light
emitted from the far side of the star can be detected and
contributes to L because of this curvature. This increases
the apparent radius by of order 30%. Nevertheless, as-
tronomers hope to have a number of increasingly accurate
measurements of NS radii. Comparing results form several
different NS measurements may provide a good check of
these corrections.

In addition to cold NS, one is also interested in the
structure of very young neutron stars as they are being
formed in Supernova explosions. These hot, lepton rich,
protoneutron stars can have maximum temperatures as
high as 50 MeV. The EOS of protoneutron stars may be
directly related to the EOS deduced from energetic HI
collisions because the temperature, density, and proton
fraction can be similar. Furthermore, this protoneutron
star EOS is important for SN simulations [7].

3 The Parity Radius Experiment and the Low

Density EOS

We now discuss the EOS at subnuclear densities. This has
many implications for the structure of NS crusts. One can
obtain information on the low density EOS from both HI
collisions and from precision measurements on stable nu-
clei. The parity radius experiment (PREX) aims to mea-
sure the neutron radius of 208Pb, accurately and model
independently, via parity violating electron scattering. As
we discuss below, the neutron radius in Pb determines the
density dependence of the symmetry energy and the EOS
of low density neutron matter. This information, from a
precision experiment on a stable nucleus, nicely comple-
ments the information from HI or radioactive beam ex-
periments.

Parity violation probes neutrons because the weak charge
of a neutron is much larger then the weak charge of a pro-
ton [8]. In the standard model the proton weak charge
is proportional to the small factor 1-4sin2θW where θW

is the weak mixing angle. One can isolate weak contribu-
tions by measuring the parity violating asymmetry A for
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elastic electron nucleus scattering. This is the cross sec-
tion difference for the scattering of positive dσ/dΩ+ and
negative dσ/dΩ− helicity electrons,

A =
dσ/dΩ+ − dσ/dΩ−

dσ/dΩ+ + dσ/dΩ−

. (2)

In Born approximation A is [8]

A =
( GF Q2

4πα21/2

)FW (Q)

Fch(Q)
(3)

where GF is the Fermi constant, α the fine structure con-
stant and Q the momentum transfer. The charge form fac-
tor Fch(Q) is the Fourier transform of the charge density,
that is known from electron scattering. The weak form
factor FW (Q) is the Fourier transform of the weak charge
density. This is dominated by the neutron density and thus
the neutron density can be deduced from measurements of
A. Note, coulomb distortions make ≈ 30 % corrections to
A for scattering from a heavy nucleus [9]. However these
can be accurately calculated.

The Jefferson laboratory PREX [10] aims to measure
elastic scattering of 850 MeV electrons from 208Pb at six
degrees in the laboratory. The goal is to measure A ≈ 0.6
ppm with an accuracy of 3%. This allows the neutron rms
radius of 208Pb to be deduced to 1%. A full discussion of
the experiment and many possible corrections is contained
in the long paper [11].

We now discuss the implications of the radius measure-
ment. Heavy nuclei are expected to have a neutron rich
skin. The thickness of this skin depends on the pressure of
neutron rich matter. The larger the pressure, the larger the
neutron radius as neutrons are forced out against surface
tension. Alex Brown showed that there is a strong cor-
relation between the neutron radius in Pb and the EOS
of pure neutron matter, as predicted by many different
mean field interactions [12]. Therefore, the neutron radius
in Pb determines P for neutron matter at ρ ≈ 0.1 fm−3.
[This is about 2/3ρ0 and represents some average of the
surface and interior density of Pb.] The pressure depends
on the derivative of the energy with respect to density.
The energy of pure neutron matter Eneutron is the energy
of symmetric nuclear matter Enuclear plus the symmetry
energy S(ρ),

Eneutron ≈ Enuclear + S(ρ). (4)

The pressure depends on dEnuclear/dρ (which is small
and largely known near nuclear density ρ0) and dS(ρ)/dρ.
Therefore, the neutron radius in Pb determines the density
dependence of the symmetry energy dS(ρ)/dρ for densities
near ρ0.

Neutron stars are expected to have a solid neutron
rich crust over a liquid interior, while heavy nuclei have a
neutron rich skin. Both the skin of a nucleus, and the NS
crust are made of neutron rich matter at similar densities.
The common unknown is the EOS of low density neutron
matter. As a result, we find a strong correlation between
the neutron radius of 208Pb and the transition density of

NS crusts [13]. The thicker the skin in Pb, the faster the
energy of neutron matter rises with density, and the more
quickly the uniform liquid phase is favored. Therefore, a
thick neutron skin in Pb implies a low transition density
(maximum density) for the NS crust.

The composition of a neutron star depends on the sym-
metry energy. In beta equilibrium the neutron chemical
potential µn is equal to that for protons µp plus electrons
µe, µn = µp + µe. Neutron stars are about 90% neutrons
and 10% protons plus electrons. However, a large symme-
try energy will favor more equal numbers of neutrons and
protons and increase the proton fraction. Thus, the com-
position of matter in the center of a neutron star depends
on the symmetry energy at high density.

Neutron stars cool by neutrino emission from the inte-
rior. If the proton fraction is large, above about 0.13, then
neutrons near the Fermi surface can beta decay to protons
and electrons near their Fermi surfaces and conserve both
momentum and energy. This leads to the direct URCA
process n → p+e+ ν̄e followed by e+p → n+νe that will
efficiently cool a NS by rapidly radiating νν̄ pairs. The
neutron radius of Pb constrains the density dependence
of the symmetry energy near ρ0. This is the crucial piece
of information for extrapolating to find the symmetry en-
ergy at large densities. We find that if the neutron minus
proton rms radii in 208Pb is larger then 0.25 fm, all of the
mean field EOS models considered allow direct URCA for
a 1.4M⊙ NS [14]. Alternatively, if this skin thickness is
less then 0.2 fm, none of the mean field models allow di-
rect URCA.

Note, the direct URCA process takes place in the high
density interior of a NS at a few or more ρ0. Therefore,
the above relation with the skin thickness in Pb involves
an extrapolation to higher density. Alternatively, energetic
HI collisions can directly produce high densities. Therefore
it would be extremely useful if one could infer the high
density symmetry energy from HI observables. Although
potentially difficult and model dependent, measuring the
symmetry energy at high density is perhaps the single most
important HI experiment for the structure of NS.

We close this section with a short discussion of other
ways to determine the density dependence of the symme-
try energy. If one assumes the symmetry energy depends
on a power of the density,

S(ρ) ≈ S0ρ
γ , (5)

then the power γ can be approximately related to the skin
thickness in 208Pb as follows,

< r2
n >1/2 − < r2

p >1/2≈ 0.22γ + 0.06 fm. (6)

This relation is a simple fit to several mean field calcula-
tions, see also [15]. As discussed by Li et al [16] and by
Colonna and Tsang [17] in the chapter on isospin prop-
erties of this book, the power γ can be deduced from HI
data involving observables such as isoscaling and isospin
diffusion. Finally we mention a recent review article which
discusses the symmetry energy in astrophysics [18].
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4 Nuclear Pasta and Multifragmentation

Nuclei involve an important interplay between Coulomb
and nuclear interactions. Indeed, all baryonic matter is
frustrated. Nucleons tend to be correlated at short dis-
tance, because of short range nuclear attraction, and anti-
correlated at long distances because of Coulomb repulsion.
Normally, the nuclear and atomic (or Coulomb) length
scales are well separated so nucleons bind into nuclei that
are segregated on a crystal lattice.

However at densities just below ρ0, in the inner crust
of neutron stars and in supernovae, coulomb and nuclear
scales become comparable. Under these conditions, the
surface energy, from nuclear attraction that favors spher-
ical shapes, and the coulomb energy, that can favor non-
spherical shapes, compete. This results in exotic nuclear
pasta phases [19] that can involve spherical (meat ball),
rod (spaghetti), plate (lasagna), or other shapes.

The coulomb frustration in nuclear pasta is similar to
the frustration found in many condensed matter systems.
Frustrated systems can not satisfy all of their elementary
interactions [20]. Examples range from magnetism [21] to
protein folding [22]. Because frustration raises the energy
of the ground state, these systems are characterized by a
very large number of low energy excitations that lead to
unusual dynamics.

Nuclear pasta may be important for a number of neu-
tron star observables. For example, r-modes are collective
oscillations of NS that can radiate gravitational waves and
may control pulsar spin periods [23]. The sheer viscosity of
the nuclear pasta at the interface between the solid crust
and liquid interior of a NS may determine the damping of
r-modes. This viscosity in turn may depend crucially on
the exotic shapes of the pasta. Some other relevant pasta
properties include thermal conductivity, sheer modules,
and neutrino emissivity.

Core collapse supernovae radiate of order 1058 neutri-
nos. The very large gravitational binding energy of the
newly formed neutron star (100 to 200 MeV/A) is re-
leased, almost entirely, in neutrinos. No other known par-
ticles can transport the energy out of the very dense core
during the few second duration of the explosion. These 10
to 20 MeV neutrinos can scatter coherently from the nu-
clear pasta because their wave lengths are comparable to
the sizes of the pasta shapes. Thus, neutrino-pasta scat-
tering [24] may be important for supernova dynamics.

Nuclear pasta in astrophysics may be closely related
to multifragmentation in laboratory heavy ion collisions.
Heavy ions, at moderate excitation energy, are observed
to break apart into several large fragments [25]. This pro-
cess may occur at the same, slightly subnuclear, densities
where nuclear pasta forms. Furthermore, both pasta for-
mation and multifragmentation are driven by the same
nuclear and coulomb energies. One may be able to tune
the interactions used in semiclassical simulations of mul-
tifragmentation, in order to reproduce laboratory data.
Then, the same simulations and interactions can be used
to describe nuclear pasta. This allows laboratory data to
be used to constrain astrophysical models.

It is important to go beyond mean field models in de-
scribing nuclear pasta. Mean field interactions, fit to con-
ventional nuclei, may not be appropriate for complex non-
uniform pasta. Furthermore, pasta may not be described
well by a Maxwell construction, such as in ref. [26] in-
volving uniform liquid and uniform gas phases. In addi-
tion, the coulomb interaction plays a crucial role in astro-
physics. The system must be electrically neutral. There-
fore, the positive charge density of the pasta is constrained
to be equal and opposite to the electron density. Finally,
one should consider a wide variety of possible shapes for
the nuclear pasta. Variational calculations involving a few
simple shapes, such as rods or plates, may miss more com-
plicated configurations.

In ref. [24] we consider a simple semiclassical model
where neutrons and protons interact via short ranged nu-
clear and screened coulomb forces. The electrons form a
very degenerate Fermi gas and are not included explicitly.
Instead, the very slight polarization of the electrons lead
to a Thomas Fermi screening length λ for the Coulomb
interactions between protons. Our model Hamiltonian is

H =
∑

i

p2
i

2m
+

∑

i<j

V (i, j) (7)

where the two body potential is

V (i, j) = ae−r2

ij/Λ+[b+cτz(i)τz(j)]e
−r2

ij/2Λ+Vc(i, j). (8)

Here the distance between the particles is rij = |ri − rj |
and the isospin of the jth particle is τz(j) = 1 for a pro-
ton and τz(j) = −1 for a neutron. The model parameters
a, b, c, and Λ have been fit to reproduce the binding en-
ergy and saturation density of nuclear matter along with a
reasonable symmetry energy [24]. The screened Coulomb
interaction is

Vc(i, j) =
e2

rij
e−rij/λτp(i)τp(j) (9)

where τp(j) = (1 + τz(j))/2 is the nucleon charge and λ
is the screening length from the slight polarization of the
electrons.

This model yields large nuclei or pieces of pasta that
are heavy and have thermal Compton wavelengths much
shorter than their inter-particle spacing. This motivates
our semiclassical approximation. More elaborate interac-
tions can be employed, such as the QMD calculations of
Watanabe et al. [27]. However our simple interaction re-
produces nuclear saturation and includes Coulomb inter-
actions. We believe these are the most important features
that determine the long range structure of the nuclear
pasta phases.

The wavelength of a 10 MeV supernova neutrino is
120 fm. To determine the pasta structure at this long
length scale may require simulations involving many par-
ticles. For example, at 1/3ρ0 there are 100,000 nucleons
in a cube 120 fm on a side. We have used special purpose
MDGRAPE computer hardware to perform molecular dy-
namics simulations with 40,000 to 200,000 nucleons [28].
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Fig. 1. Proton density iso-surface for a sample configuration
of 40,000 nucleons at ρ = 0.01 fm−3, T = 1 MeV and proton
fraction 0.2. The simulation volume is about 160 fm on a side.

We are interested in the neutron rich matter during a
supernova. The proton fraction starts near 1/2 and drops
to low values as electron capture proceeds and electron
neutrinos diffuse out of the core. Figure 1 shows a sample
configuration of 40,000 nucleons at a density of 0.01 fm−3,
a proton fraction of 0.2, and a temperature of T = 1 MeV.
An iso-surface of the proton density is shown. At this den-
sity, most of the protons cluster into neutron rich nuclei.
Between these nuclei, there is a low density neutron gas
that is not shown in Fig. 1.

To characterize the heavy nuclei in Fig. 1 we have used
a clustering algorithm. A nucleon is said to belong to a
cluster if it is within a cutoff radius RC ≈ 3 fm of at
least one other nucleon in the cluster. This divides the
40,000 nucleons into about 12,000 free neutrons, a collec-
tion of light nuclei, and about 250 heavy nuclei as shown
in Fig. 2. The heavy nuclei have an average mass near
< A >≈ 100 and a Z/A ≈ 0.3. Note, this Z/A is some-
what greater then the total proton fraction of 0.2 because
of isospin distillation. The rest of the neutrons go into the
low density neutron gas. Our simulation results are qual-
itatively similar to many statistical models such as those
of Botvina [29]. The distribution of clusters reflects a bal-
ance between binding energy, favoring large clusters, and
entropy, that favors light clusters. However in detail, the
distribution can be sensitive to the nuclear masses pre-
dicted by a given model.

As the density increases, the background electron gas
cancels more of the Coulomb interaction. This allows the
formation of larger clusters. In Fig. 3 we compare the clus-
ter distribution at ρ = 0.01 fm−3 to that at ρ = 0.025
fm−3 (for the same T = 1 MeV and proton fraction 0.2).
At ρ = 0.025 fm−3 the average mass is now < A >≈ 200
and there is a tail in the distribution to very heavy nuclei.

Finally, as the density is increased further the nuclei
start to strongly interact. Figure 4 shows an is-surface
of the proton density at ρ = 0.05 fm−3 (≈ 1/3ρ0). Now
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Fig. 2. Fragment size distribution for the sample configuration
of Fig. 1, see text.
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Fig. 3. Fragment size distributions at ρ = 0.01 and 0.025
fm−3.

spherical nuclei are no longer favored. Instead, long spaghetti
like strands are seen that have complex shapes. The frag-
ment distribution now includes very large clusters whose
size scales with the simulation volume. Thus, heavy nuclei
have percolated together to form a complex pasta phase.
Note that increasing the density still further to ρ = 0.075
fm−3 (1/2ρ0) results in a transition to uniform nuclear
matter, not shown.

The clusters seen in Figs 1 and 4 can be characterized
by the static structure factor Sq [24,28]. This describes
the degree of coherence for neutrino scattering from the
nonuniform system. This is directly analogues to Sq for
many complex condensed matter systems that can be de-
duced from neutron or X-ray scattering. The static struc-
ture factor coherently sums the reflected waves for neu-
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Fig. 4. Proton density iso-surface for a sample configuration
of 100,000 nucleons at ρ = 0.05 fm−3, T = 1 MeV and proton
fraction 0.2. The simulation volume is about 120 fm on a side.
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Fig. 5. The static structure factor Sq for T = 1 MeV and
Yp = 0.2 for the indicated densities.

trino scattering from each neutron in the system,

Sq =
∑

i,j

exp[iq · (ri − rj)], (10)

where q is the momentum transferred from the neutrino
to the system. In Fig. 5 we show Sq for densities of 0.01,
0.025, 0.05, and 0.075 fm−3. This scans the density range
from largely isolated nuclei (in Fig. 1) through the com-
plex pasta phases (Fig. 4) to uniform nuclear matter. A
large peak is seen in Sq for q ≈ 0.3 fm−1. This corresponds
to neutrino nucleus elastic scattering at ρ = 0.01 fm−3 or
coherent neutrino-pasta scattering at ρ = 0.05 fm−3. Here
the neutrino scatters coherently from all of the neutrons
in a cluster. This peak largely vanishes for the uniform
system at ρ = 0.075 fm−3.

At low q, Sq is small in Fig. 5 because of ion screening.
If one places an impurity heavy nucleus or piece of pasta
into the system, the other clusters will rearrange because
of Coulomb interactions until they act to screen the charge
of the impurity. This leads to a reduction of Sq. In the
next section, we will use these results for Sq to discuss the
liquid vapor transition.

One can use the time dependence of the molecular dy-
namics simulations to calculate the dynamical response
function S(q, w) that measures how likely it is for a neu-
trino to transfer momentum q and energy w to the system.
At ρ = 0.05 fm−3, we find a high energy peak in S(q, w)
that represents plasma oscillations of the charged pasta
and a peak at low w that may correspond to nucleons
diffusing between the pasta and the vapor [30].

5 Liquid-Vapor Transition

There is great interest in the transition between a nucleon
vapor at low densities and liquid nuclear matter at high
density, see for example [31]. Often this is described as a
first order phase transition. However, here we would like to
discuss two complications to this simple first order picture
that arise in the thermodynamic limit. First, we believe
the low density vapor must necessarily be complex and
involve heavier nuclei such as alpha particles in addition to
free nucleons. Second, coulomb interactions replace a first
order liquid-vapor phase transition with complex mixed
phases such as nuclear pasta.

The vapor phase, in the limit of very low densities,
can be described exactly with the Virial expansion [32,
33]. Here, the pressure P is expanded in powers of the
fugacity z =exp(µ/T ) where µ is the chemical potential.
The second virial coefficient b2, that gives the z2 contri-
bution to the pressure, can be calculated exactly in terms
of the two-body elastic scattering phase shifts. However,
nuclear matter is self-bound and tends to form clusters,
see Fig. 1. In ref. [33] we considered a system of neutrons,
protons, and alpha particles. Because of their large bind-
ing energy, alphas tend to be more important then mass 3
nuclei. Furthermore at very low densities, heavy nuclei are
disfavored because of their low entropy. We calculated the
relevant second virial coefficients from NN , N − α, and
α − α elastic scattering phase shifts. This allows one to
make model independent predictions for the alpha particle
fraction in the low density vapor, see Fig. 6 [33]. Errors in
this fraction can be estimated from neglected third Virial
coefficients.

The alpha fraction can be large. Therefore, even at
very low densities say 0.001ρ0, the vapor, in the thermo-
dynamic limit, must contain more then just free nucleons.
Note that the virial expansion is exact in the limit of very
low density. It shows that the alpha fraction is nonzero
and grows with increasing density, without having to pass
through a phase transition.

It is interesting to compare this complex nuclear vapor
to steam in the H2O system. This may be the model for
a liquid vapor phase transition. Clusters of multiple H2O
molecules do indeed form, see for example [34]. However
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Fig. 6. The alpha particle mass fraction Xα in symmetric
nuclear matter versus density at a temperature of 4 MeV as
calculated in the Virial expansion (solid curve). The error bars
are from estimates of the neglected third virial coefficients. The
curves labeld LS and Sumi are from phenomenological models,
see [33].

their abundance is very low. In contrast, the large alpha
binding energy leads to much larger alpha concentrations.
Therefore nuclear vapor may be much more complex then
water vapor.

We now discuss a possible first-order liquid vapor phase
transition in astrophysics. A two phase coexistence region
has large density fluctuations as low density vapor is con-
verted to or from a high density liquid. Scattering from
these fluctuations could greatly reduce the neutrino mean
free path in a supernova [35].

The static structure factor, in the long wave length
limit, Sq=0 describes fluctuations in the number of neu-
trons N or density fluctuations,

Sq=0 =
1

N
(〈N2〉 − 〈N〉2). (11)

If we assume fluctuations in the neutron density are pro-
portional to fluctuations in the baryon density, this can
be written,

Sq=0 ≈ (
N

N + Z
)

T

dP/dn
. (12)

When two phases coexist, the pressure is constant at the
vapor pressure, and the derivative of the pressure with
respect to density vanishes dP/dn = 0. Therefore, Sq=0

diverges in a two phase coexistence region of a first order
liquid vapor phase transition.

However we find in Fig. 5 that Sq=0 is small, from ion
screening, instead of diverging from density fluctuations.
Therefore, the system does not undergo a first order liq-
uid vapor phase transition. The complex structures seen
in Fig. 4 can be viewed as a mixed phase with the pos-
itively charged nuclear pasta liquid in equilibrium with
a low density nucleon vapor that occupies the space be-
tween the pasta, and is not shown in Fig. 4. However

the average charge density of the pasta must be equal
and opposite to the background electron charge density.
Therefore coulomb interactions suppress density fluctua-
tions and eliminate a first order liquid vapor phase tran-
sition.

Note, coulomb interactions for the relatively small sys-
tem of a heavy ion collision, may be smaller and still al-
low features of a liquid-vapor phase transition. However,
coulomb interactions, in the nearly infinite astrophysical
system, may play a larger role suppressing density fluctu-
ations and modifying the liquid-vapor phase transition.

We end this section with some alternative interpre-
tations of our results. One can view the complex density
shown in Fig. 4 as many microscopic regions of a high den-
sity liquid phase interspersed with a low density gas phase.
Furthermore, this microscopic picture may be useful to
describe heavy ion collisions, with only one (or a few) liq-
uid region(s). However, this picture may have limitations
describing large systems in astrophysics. Coulomb interac-
tions strictly limit the size of any single liquid region. Thus
there is no uniform thermodynamic limit. Surface effects
will always be important. Furthermore, we do not find the
density fluctuations expected of a classical two-phase co-
existence region. If by phase, one means a macroscopic
region, then Fig. 4 can not represent a macroscopic liquid
phase in equilibrium with a macroscopic vapor phase.

This microscopic picture can also be applied to our
alpha particle results in Fig. 6. In principle, one can view
alpha particles as very tiny drops of liquid. Then the alpha
concentration in Fig. 6 could represent many tiny regions
of a liquid phase in equilibrium with a simple vapor phase
composed of only free nucleons. However given the very
small size of alpha particles, we think that this two phase
interpretation is strained.

It may be useful to compare our nonuniform system to
a uniform one. As the density is decreased from ρ0, we find,
at some density, the uniform system becomes unstable and
a nonuniform system is favored. If one changes the density
and temperature very rapidly during a heavy ion collision,
a uniform phase may persist as a metastable state until
it reaches a spinodal. At the spinodal, the compressibil-
ity is negative and the system may rapidly evolve into
a nonuniform state. However there is no way to enforce
that the density stays uniform. During a core collapse su-
pernova, the density and temperature change very slowly
over a very long time scale of milliseconds. This should
allow plenty of time for the system to reach thermody-
namic equilibrium. We believe the system will promptly
become nonuniform and not pass through a metastable
uniform state. As a result the system may never reach
the spinodal, and any rapid dynamics associated with the
spinodal may not be relevant for astrophysical systems.

Finally, we mention a possible limitation of our re-
sults. We have only run simulations for a few densities
ρ = 0.01, 0.025, 0.05, and 0.075 fm−3, and a single tem-
perature 1 MeV. Therefore we can not rule out a possible
critical point, and associated critical fluctuations, for other
conditions.
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6 Summary

Heavy ion experiments provide important data to test as-
trophysical models. In general, one must extrapolate HI
data to longer times, larger sizes, and more neutron rich
systems. The high density equation of state can be probed
in HI collisions and applied to the hot protoneutron star
formed in core collapse supernovae. The Parity Radius Ex-
periment (PREX) aims to accurately measure the neutron
radius of 208Pb with parity violating electron scattering.
This determines the pressure of neutron rich matter and
the density dependence of the symmetry energy. Compe-
tition between nuclear attraction and coulomb repulsion
can form exotic shapes called nuclear pasta in neutron star
crusts and supernovae. This competition can be probed
with multifragmentation HI reactions. A first order liquid
vapor phase transition has density fluctuations that could
impact neutrino interactions in supernovae. We use large
scale semi-classical simulations to study non-uniform neu-
tron rich matter. We find that the coulomb interactions
in astrophysical systems suppress density fluctuations. As
a result, the system does not undergo a first order liquid
vapor phase transition. Finally, the virial expansion for
low density matter shows that the nuclear vapor phase is
complex with significant concentrations of alpha particles
and other light nuclei in addition to free nucleons.
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