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Abstract. This chapter gives a historical review of the scaling of particles yields emitted from excited nuclei. The focus will
be on what scaling is, what can be learned from scaling, the underlying theory of why one might expect particle yields to
scale, how experimental particle yields have been observed to scale, model systems where particle (cluster) yields do scale
and finally scaling observed in the particle yields of various low and medium energy nuclear reaction experiments. The chapter
begins with a basic introduction to scaling in the study of critical phenomena and then reviews Fisher’s theory which has all
the aspects of scaling and can be directly applied to the counting of clusters, the most reliable measurement accessible to the
experimental study of nuclear reaction. Also this chapter gives a history of the various scalings observed in nuclear reaction
experiments and culminates with an estimate of the nuclear liquid-vapor phase boundary based upon measured particle yields.
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INTRODUCTION

This chapter performs the modest task of covering eight decades worth of research on scaling in condensed matter and
nuclear physics [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 139,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207]. Inevitably,
such an attempt will be incomplete and every reader will have his or her own favorite reference(s) omitted. To that end
we humbly submit this chapter as a starting point for the motivated reader from which they can, perhaps, further their
own understanding and research.

Scaling has been called “one of the three pillars of modern critical phenomena” [134]. The scaling hypothesis
used in the study of critical phenomena was independently developed by several scientists, including Widom, Domb,
Hunter, Kadanoff, Fisher, Patashinskii and Pokrovskii (see reference [18] for an authoritative review). Much of scaling
is contained in the renormalization group work of Wilson [33].

The scaling hypothesis has two categories of predictions, both of which have been verified experimentally for a
variety of physical systems. The first category is a set of relations calledscaling laws. These scaling laws relate the
critical exponentsα, β andγ which describe, for instance, the behavior of the the specific heat (C∼ ε−α ), density
differences of the phases (ρl − ρv ∼ εβ ) and isothermal compressibility (κT ∼ ε−γ ) for fluid systems; specific heat
(C∼ ε−α ), magnetization (M ∼ εβ ) and isothermal susceptibility (χT ∼ ε−γ ) for magnetic systems or the singular
part of the zeroth, first and second moment of the cluster distribution percolating systems near a critical point
(ε = (Tc−T)/Tc for physical systems and(pc− p)/pc for percolating systems). In all the systems mentioned here,
and more, these exponents are related via the scaling law

α +2β + γ = 2. (1)

The second category isdata collapse, which is easily demonstrated with the Ising model. We may write the equation
of state as a functional relationship of the formM = M(H,ε) whereH is the applied magnetic field. SinceM(H,ε) is
a function of two variables, it can be graphically represented asM vs ε for differentH values. The scaling hypothesis
predicts that all of theseM vs ε curves can be “collapsed” onto a single curve provided that one plots notM vs ε but
rather a scaledM (M divided byH) to some power as a function of a scaledε (ε divided byH to some other power).
The predictions of the scaling hypothesis are supported by a wide range of experimental work with physical systems
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Fig. 6. The scaling function of the susceptibility fχ (z) = χH0h1−1/δ . The solid line is the parametrization of
Ref. [3], the dashed lines are the asymptotic forms (34). The numbers refer to the J = 1/T -values of the data.
The star represents the normalization fχ (0) = 1/δ.

6. The correlation length

Instead of using correlation functions of the individual spins it is more favourable [31] to
consider spin averages over planes and their respective correlation functions. For example,
the spin average over the (x, y)-plane at position z is defined by

(67)Sz = 1
L2

∑
x,y

φx,y,z.

The average S of all Sz is equal to the lattice average φ and

(68)〈Sz〉 = 〈S〉 = 〈φ〉.
Correspondingly, we define the plane-correlation function G(z) by

(69)G(z) = L2
(〈S0Sz〉 − 〈S〉2).

Here, z is the distance between the two planes. Instead of choosing the z-direction as
normal to the plane one can as well take the x- or y-directions. Accordingly, we enhance
the accuracy of the correlation function data by averaging over all three directions and all
possible translations. The correlators are symmetric and periodic functions of the distance
τ between the planes

(70)G(τ) = G(−τ ) and G(τ) = G(L − τ ).

The factor L2 on the right-hand side of (69) ensures the relation

(71)χ =
L−1∑
τ=0

G(τ) =
L/2∑

τ=−L/2+1
G(τ).

FIGURE 1. Examples of data collapse for various fluids and a magnetic system. Top left: the temperatureT divided by the critical
temperatureTc plotted as a function of the vapor densityρv and liquid densityρl normalized to the critical densityρc [6]. Bottom
left: the cube of the normalized liquid vapor density differenceR= (ρl −ρv)/ρc = ∆ρ/ρc plotted as a function of the normalized
temperatureT/Tc for “quantum” fluids (a: He3, b: He4 and c: H2) and classical fluids (d), all fluids show scaling of the first category:
ρl −ρv∼ εβ [13]. Center: the scaled chemical potential|∆µ|/ |ε|βδ plotted as a function of the scaled density difference|∆ρ|/ |ε|β
in the critical region of several fluids (CO2, Xe, SF6, Ar, N2O and CClF3) [15]. Top right: scaled experimentalMHT data on five
different magnetic material: CrBr3, EuO, Ni, YIG and Pd3Fe [134]. Bottom right: the scaled susceptibility plotted as a function of
the scaled temperature for thed = 3 Ising model [186].

as well as computational models [6, 13, 15, 18, 35, 36, 37, 39, 41, 45, 47, 54, 67, 76, 101, 117, 134, 153, 154, 156,
159, 173, 179, 185, 186, 190, 201, 203]. Figure 1 shows some selected examples of data collapse.

The success of scaling in condensed matter is unquestionably impressive, but how is this sort of scaling related
to the main topic of this chapter: the scaling of light fragment yields from nuclear multifragmentation experiments
(where direct, straightforward measurements of standard thermodynamic quantities like density, pressure, chemical
potential and so on are impossible)? To see how the two are related we present a derivation of Fisher’s theory in the
next section.

An aside: in the following text the more general term “cluster” will be used instead of “fragment” or “droplet.”
This is done to underscore the similarity between nuclear fragments and clusters (properly defined [24, 28, 44, 182])
in systems like the Ising model and droplets of fluid (classical or quantum). We also do this to avoid the unfortunate
labeling of the process of nuclear cluster production as “fragmentation” which has a specific meaning in condensed
matter physics [73] that may be quite different than what the nuclear multifragmentation community has in mind.

FISHER’S THEORY AND SCALING

Physical cluster theories

Fisher’s theory is an example of an equation of state that scales [17, 18, 156, 182] and is one of many physical cluster
theories. Physical cluster theories of non-ideal fluids assume that the strength of the monomer-monomer interaction
is exhausted by the formation of clusters, and that the clusters behave ideally (i.e. they are independent of each
other). Clusters of a given number of constituentsA can be characterized by their massmA, a chemical potential



(per constituent)µ and a partition functionqA(T,V) that depends on the temperatureT and volumeV of the fluid.
Because of the ideality of the fluid of clusters, the pressure and density are straightforward to determine the pressure
p as

p =
T
V

∞

∑
A=1

qA(T,V)zA (2)

and the densityρ as

ρ =
1
V

∞

∑
A=1

AqA(T,V)zA (3)

wherez is the fugacityz= eµ/T . The concentration ofA clusters is then

nA(T,z) =
qA(T,V)zA

V
. (4)

Fisher’s theory

Fisher’s contribution to physical cluster theory was to write the partition function of a cluster in terms of the free
energy of the cluster. The energetic contribution to the free energy (very recognizable to nuclear scientists) is based on
the liquid drop expansion

EA = EV +Es (5)

whereEV is the volume (or bulk) binding energy of the cluster which is taken to be

EV = aVV ' a′vA (6)

hereV is the volume of the cluster,av is the volume energy coefficient in terms ofV anda′V is the volume energy
coefficient in terms ofA. The termEs is the energy loss due to the surfacesA (where surface is taken as thed−1
measure of a cluster that exists ind Euclidean dimensions) of the cluster. For clusters ind-dimensions this is usually
taken to be

Es = ass' a′sA
d−1

d (7)

heres is the surface of the cluster,as is the surface energy coefficient in terms ofs and a′s is the surface energy

coefficient in terms ofA
d−1

d . BecauseEs is a measure of the volume energy loss due to the finiteness of the cluster,
i.e. that the cluster has a surface, the surface energy coefficient is nearly equal to and opposite in sight to the volume
energy coefficient:a′s' −a′V . Fisher left the surface energy factor more general, writingEs = a′sA

σ whereσ is some
general exponent describing the ratio of the surface to the volume of the cluster.

Fisher estimated the entropic contribution to the free energy of the cluster based on a measure of the combinatorics
of the number of clusters with surfaces

gs' g0s−xebss (8)

whereg0 is some overall normalization,bs can be thought of as the limiting entropy per unit surface of a cluster. This
estimate can be tested by the study (and direct counting) of the number of self-avoiding polygons on the square lattice
[140, 180, 192]. An example of a self-avoiding polygons on the square lattice is shown in Fig. 2. The study of self-
avoiding polygons shows that to leading ordergs' 0.562301495s−

5
2 e0.97s [140] while a fit to the direct counting of

self-avoiding polygons (shown in Fig. 2) gives 0.62s2.55e0.97s [180, 193]. Fisher then assumed that for large clusters,
over some small temperature range the most probable or mean surface of a cluster would go as

s' a0Aσ (9)

so thatgs could be re-written as
gA ' g′0A−τeb′sA

σ

(10)

whereg′0 = g0a−x
0 , τ = xσ andb′s = bsa0. Which gives the entropy of a cluster as:

SA = lngA = lng′0− τ lnA+b′sA
σ . (11)
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FIGURE 2. Left: an example of a self-avoiding polygon on the square lattice withA = 23 ands= 40, there are 49,157,726,494
ways to form a cluster with this number and surface. Right: a fit using Eq. (8) (solid line) to the direct counting ofgs (open circles).

The partition function of a cluster is then

qA(T,V) = V

(
2πmAT

h2

) d
2

exp

(
−EA−TSA

T

)

= Vg′0A−τ exp


[
aV − d

2AT ln
(

h2

2πmAT

)]
A

T

exp

[
− (a′s−Tb′s)Aσ

T

]
. (12)

Equation (4) then gives the cluster concentration as

nA(T) = g′0A−τ exp


[
aV − d

2AT ln
(

h2

2πmAT

)]
A

T

exp

[
− (a′s−Tb′s)Aσ

T

]
zA

= g′0A−τ exp


[
µ +aV − d

2AT ln
(

h2

2πmAT

)]
A

T

exp

[
− (a′s−Tb′s)Aσ

T

]
. (13)

Fisher identified the numerator of the first exponential as the distance from phase coexistence as measured by the
chemical potential

∆µ = µ +aV −
d

2A
T ln

(
h2

2πmAT

)
, (14)

where at coexistence (or condensation)∆µ = 0 and µcoex = d
2AT ln

(
h2

2πmAT

)
− av. The “microscopic” part of the

surface tension(a′s−Tb′s) vanishes at the critical point, leaving only a power law (which has been explicitly verified
in computational systems [30, 41, 71, 67, 72, 84, 86, 87, 91, 93, 103, 111, 115, 116, 117, 118, 132, 135, 137, 144, 153,
156, 185, 190, 193, 201] and implicitly verified in a wide variety of physical fluids [25, 29]). Thus

Tc =
a′s
b′s

. (15)

Using Eq. (14) and assuming little or no temperature dependence ofa′s andb′s over the temperature range in question,
then we may re-write Eq. (13) as

nA(T) = g′0A−τ exp

(
∆µA

T

)
exp

(
−a′sεAσ

T

)
(16)

which gives the familiar expression for the cluster number concentration.
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FIGURE 3. The scaling of cluster concentrationsns(T) from d = 3 Ising calculations on the simple cubic lattce [203]. Top (from
left to right): The cluster concentration atT = 0.997Tc in terms of cluster surfaces (the solid line shows the cluster concentration
at the critical point which is empirically estimated to go asns(Tc) = 3.85s−2.569); the scaling ofns(T) according to Fisher’s theory
with a surface free energy which varies linearly inε; and the scaling ofns(T) according to Fisher’s theory with a surface free energy
which varies asε2ν . Bottom (from left to right): The cluster concentration atT = 0.997Tc in terms of cluster numberA (the solid
line shows the cluster concentration at the critical point which goes asnA(Tc) = 0.093s−2.209 [190]); the scaling ofnA(T) according
to Fisher’s theory with a surface free energy which varies linearly inε; and the scaling ofnA(T) according to Fisher’s theory with
a surface free energy which varies asε2ν (the solid line shows the value of the surface free energy coefficienta′s = 12.63±0.04
[203]). Colors give the surface or number of the cluster as can be seen in the left most plots. No fitting has been done in any of the
plots of this figure.

Caveats

Before proceeding further, we must study the implications and assumptions inherent in Fisher’s theory. The first
implication is that a cluster’s surface free energy is linear inε. This implication appears in Fisher’s work only when
studying the analytical character and the critical point [17] and does not appear explicitly in the cluster concentrations
until other work with Fisher’s theory [30, 34, 38, 41]. In terms of the surface area of a cluster, the concentration is the
product of the combinatorial factor and a Boltzmann factor that depends on the surface energy:

ns(T) ∝ gsexp
(
−ass

T

)
. (17)

Following the arguments put forward in the preceding section and using Eq. (8) gives

ns(T) ∝ s−x exp
(
−asεs

T

)
, (18)

suggesting that the surface tension of a cluster isasε.
However, it has long been known empirically [1] that the surface tension of macroscopic fluidsΓ (the surface free

energy per unit area) is not linear inε. In fact, to lowest order, asT → Tc [14, 18, 19]

Γ = Γ0ε
(d−1)ν (19)

whereν is the critical exponent that also describes the divergence of the correlation length near the critical point and
is related to other exponents through the hyper-scaling relation [14, 18]

dν = γ +2β = 2−α− τ−1
σ

. (20)
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FIGURE 4. Left: the scaling of cluster concentrationsns(T) from d = 3 Ising calculations on the simple cubic lattce [203]
according to Eq. (24). Over 700 points are collapsed to a single curve with the fit parameters:Tc = 4.516±0.004,g′0 = 4.3±0.2,
x = 2.58± 0.01, as = 4.04± 0.09, aθ = −2.11± 0.04, a1 = 1.73± 0.06 andδs = −1.7± 0.1. Colors give the surface of the
cluster as in Fig. 3. Right: a comparison of the behavior of the surface tension from the fit to the left (open circles) and the surface
tension determined in reference [120] (open squares), while the parameters are different, the overall behavior is similar over the
temperatures considered: 2.5≤ T ≤ 4.5.

Studies of thed = 3 Ising model indicate that the surface tension is sensitive to higher order terms (H.O.T.s)

Γ = asε
2ν

(
1+aθ ε

θ +a1ε

)
(21)

with as = 1.55±0.05,aθ =−0.41±0.05,θ = 0.51 anda1 = 1.2±0.1 [120].
It has also long been known that the surface tension of a clusterΓ(A,T) may differ from surface tension of a

macroscopic fluidΓ [7, 202]

Γ(A,T) = Γ
(

1− 2δr

rA

)
(22)

whereδr is the Tolman length independent of cluster sizes andrA is the radius of the cluster. However, this affects only
the magnitude of the surface tension, whereas the temperature dependence of the surface tension remains the same for
clusters and the macroscopic fluid.

Figure 3 shows that the concentrations of clusters as a function of their surfacens(T) in d = 3 Ising calcutaions
[203] are poorly described by Eq. (18) and better described by

ns(T) ∝ s−x exp

(
−asε

2νs
T

)
, (23)

with ν = 0.6299±0.0002 set to itsd = 3 Ising value andTc = 4.51152±0.00004 set to its value for the simple cubic
lattice [176], the exponentx is determined empirically from a power law fit to the cluster concentrations atT = Tc.
The same is not true when scaling in terms of cluster numberA: Eq. (13), with a surface free energy linear inε gives
a better description than usingε2ν .

As an aside we note that the data collapse shown in Fig. 3 can be improved by taking into account the higher order
terms in Eq. (21) and the cluster size effects in Eq. (22) the cluster concentration of Eq. (23) to give

ns(T) = g′0s−x exp

−sasε
2ν

(
1+aθ εθ +a1ε

)(
1− 2δs√

s

)
T

 . (24)

Figure 4 shows the results for the scaled cluster concentrations and the surface tension.
To understand whynA(T) surface free energy is better described by a surface free energy linear inε we look in

more detail at the change in describing the cluster concentrations in terms of cluster numberA rather than the cluster’s



FIGURE 5. The surface tensionΓ in terms of cluster surfaces and the surface tensionΓ/ρ
2/3
l in terms of cluster numberA as a

function ofε = (Tc−T)Tc for: “quantum” fluids (hydrogen and helium), noble gases (krypton and xenon) and poly-atomic fluids

(methane and water). The blue circles show data points [205] and the red lines show fits toΓ = Γ0ε2ν andΓ/ρ
2/3
l = Γ′0ε2ν .

surfaces. Working in d = 3 for the sake of illustration and assuming that the clusters are spherical (which will be
tested below) we have the cluster’s surface as:

s= 4πr2
A (25)
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FIGURE 6. Left: the direct counting ofgs (open circles) andgs,A (symbols). Middle: the most probable surface as a function of
A andT. Right: top: the effective surface to volume exponentσ as a function of temperature; bottom: the fractal dimensionDF as
a function of temperature, see references [67, 193] for details.

whererA is the radius of the cluster in question. The cluster’s volume is

V =
4
3

πr3
A. (26)

Using the density of the clusterρ = A/V shows that

s= 4π

(
3

4πρ

)2/3

A2/3. (27)

If we treat each cluster in the vapor as a small drop of liquid, then the pertinent density is the density of the liquidρl
and

s= 4π

(
3

4πρl

)2/3

A2/3. (28)

Now then the surface free energy is

Fs = Γ0ε
2νs= Γ0ε

2ν4π

(
3

4πρl

)2/3

A2/3. (29)

To see the effect of the change from cluster surface to cluster number we look at the surface tension for a selection of
real fluids shown in Fig. 5. For a broad range of fluids asε → 0 Eq. (19) describes the behavior of the surface tension.

However, for the ratio ofΓ/ρ
2/3
l is described by

Γ

ρ
2/3
l

= Γ′0 ε. (30)

The effective exponentνeff of ε of Fs in Eq. (29):

νeff =
∂ lnFs

∂ lnε
= 2ν− 2

3

d1ε +dβ βεβ

1+d1ε +dβ εβ
(31)

where the parameterization

ρl = ρc

(
1+d1ε +dβ ε

β

)
(32)

was used for the density of the liquid [6]. In the limit ofε → 0: νeff → 2ν but away fromε = 0: νeff → 1 for systems
in thed = 3 Ising class andνeff → 0 for systems in thed = 2 Ising class. Thus, it is clear that the translation from
cluster surface to cluster number causes the surface free energy to vary, approximately, linearly inε away from the
critical point.



Next we can examine Fisher’s assumptions on the most probable or mean surfaces of a cluster. We may do this by
using the combinatorics of self-avoiding polygons and noting that, at phase coexistence, Eq. (33) is the product of the
combinatorial factor and a Boltzmann factor that depends on the surface energy:

ns,A(T) ∝ gs,Aexp
(
−ass

T

)
(33)

where now we write things explicitly in terms of both cluster numberA and cluster surfaces [191, 193]. The mean
surface of a cluster is then just

s=
∑∞

A=1sns,A(T)
∑∞

A=1ns,A(T)
. (34)

Using the direct counting ofgs,A (see Fig. 6) and setting (as in the Ising model)as = 2 (thusTc ' 2
0.97 = 2.06) we can

determine the most probable surface of a cluster ofA constituents at temperatureT. Fitting s(A) with a0Aσ letting a0
andσ be free parameters we can study Fisher’s assumption. Figure 6 shows that at low temperaturesσ ' 0.5 as one
would expect for ad = 2 system. As the temperature increases the value ofσ increases. AtT = Tc ' 2.06,σ ' 0.65,
a change of 30% from theT = 0 value ofσ . Thus, Fisher’s implicit assumption thatσ is a constant is only accurate
to the 30% level in this example. Looking at the accpeted value ofσ = 8/15 from thed = 2 Ising model [201] and
comparing it to the expectedT = 0 value ofσ = 1/2 shows this assumption to be accurate to the 6.67% level for
0≤ T ≤ Tc. Looking at the accpeted value ofσ = 0.63946±0.0008 from thed = 3 Ising model [190] and comparing
it to the expectedT = 0 value ofσ = 2/3 shows this assumption to be good to the 4.08% level for 0≤ T ≤ Tc. When
the temperature is restricted to a very small range aroundT ∼ Tc this assumption is quite good.

Another possible problem with this assumption is not only the dependence ofσ on temperature, but the dependence
of a0 on temperature and cluster sizeA. Fisher implicitly assumed that forA→ ∞ a0 is some constant. Using Eq. (34)
with thegs,A of self-avoiding polygons we can test this assumption, by examining

a0 = A−σ s= A−σ ∑∞
A=1sns,A(T)

∑∞
A=1ns,A(T)

. (35)

In this exampleσ = 8/15 is taken from thed = 2 Ising model andT = 1' Tc/2. Figure 7 shows the results. For
A< 10 the value ofa0 clearly shows “shell effects” that cause fluctuations on the order of 10% of the limiting value of
a0. For A≥ 10 the shell effects diminish and the limiting value ofa0 ' 4.6 is reached. Thus in this example Fisher’s
assumption holds forA≥ 10 [191].

Figure 7 also shows the results from a direct counting ofd = 3 self-avoiding polyhedra [195] and clusters from the
d = 3 simple cubic Ising lattice [203]. Thegs,A for the self-avoiding polyhedra has been directly counted up toA = 9,
counting forA≥ 10 is prohibitively time consuming on today’s computers. However, the dependence ofa0 on cluster
size and temperature can be investigated just as in the case of thed = 2 polygons (usingσ = 0.63946±0.0008 and
as = 2, which holds for thed = 3 Ising model as well). We see that for the lowest temperature (T = 1, as compared to
thed = 3 Ising modelTc = 4.51152±0.00004 [176]) the shell effects are evident: for perfect cubesA = 1 andA = 9
a0 = 6 as expected. As the temperature increases the shell effects are washed out anda0 shows a steady rise withA.
The steady rise ofa0 with A could indicate thatσ ≥ 0.63946±0.0008 (which violates the first category of scaling as
will be seen below) or that the limiting behavior Fisher assumed does not set in untilA� 50. In either case, it seems
this assumption is poorer ind = 2 than ind = 3.

Finally, we note that Fisher’s theory is valid only forT ≤ Tc: temperatures greater thanTc yield cluster surface free
energies that are negative, and thus unphysical. The parametrization used in Fisher’s theory is only one example of a
more general form of the scaling assumptionnA = A−τ f (X) andX = Aσ εφ and wheref (X) is some general scaling
function which [37, 41, 45, 54, 154]:

• is valid on both sides of the critical point;
• for smallX (T ∼ Tc and smallA) andε > 0, f (X) will vary as exp(−X) with σ = 1/(βδ ) = 1/(γ + β ) ∼ 0.64

for three dimensional Ising systems, 8/15 for two dimensional Ising systems or∼ 0.45 for three dimensional
percolation systems andφ = 1;

• for large X (T far from Tc or largeA) and ε > 0, f (X) will vary as exp(−X) with σ = (d− 1)/d for all d
dimensional systems and withφ = 2ν .

Figure 8 shows the general form of the scaling functionf (X) for percolation systems [37, 41, 45, 154]. However, this
more general scaling functionf (X) does not lend itself as easily to a physical interpretation as does the parameteriza-
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Fig. II. Scaling plot in three dimensions on a simple cubic 100 x 100 x 100 lattice. Data for different p follow the same curve, as required by
eq. (15). The parabola follows eq. (25). From ref. [26].

function of dimensionality. It is not clear what to expect for fmax and more generally for the shape of
the scaling function f(z) for finite dimensionahities above six.
Universality for the cluster size distribution has also been tested in two [71] and three [26]

dimensions. By adjusting the two lattice-dependent parameters q0 and q1 in eq. (21a) Leath and Reich
[71]could confirm excellently the similarity of triangular and square lattices with respect to cluster
numbers, for s above 85. And in three dimensions [26],bcc and sc lattice also seem to have the same
shape of the scaling function f, as required by universality. Moreover, by usit~g(p — p~)Ip~instead of
p — p~in the definition of the scaling variable z, the two lattices even could be described [26]by the
same parameter q1, a particularly simple form of universality (also perhaps not exact).
In conclusion, scaling for the cluster numbers n5(p), eq. (15), seems to be confirmed well for

sufficiently large clusters close to p~in two and three dimensions. In two dimensions, different work
by different authors using Monte Carlo and series techniques gives consistent results; deviations
seldomly amount to more than ten percent. A comparison of two lattices in twO and three dimensions
confirmed well the universality concept. Very little is published on cluster numbers for more than
three dimensions [45].

3.2.4. Decay far away from p~,
In eqs. (23, 24) we noticed already that forp  p~the cluster numbers decay exponentially for large

s, with log n3 x — ~1/2 above p,~,and cc — s below Pc. That conclusion was bas~don Monte Carlo data
with concentrations between Pc — 0.05 and p~+ 0.05 rather close to the critical point. Away from the
critical point, the inequalities of section 2.4 give for this decay exponent: ~(p~-* 0) = 1 and ~(p-+ 1) =
1 — lid in d dimensions [90].How is the situation for intermediate concentrations, say at p = ~ And
what about three dimensions?

Monte Carlo methods for the cluster numbers do not work well far away from Pc for large s since
only close to Pc many large clusters appear. But since the typical cluster size sE cc Jp —p~’~’is very
large only close to p~’we now perhaps are no longer forced to go to very largó values of s to see the
asymptotic behavior. Thus the exact cluster numbers of Sykes et al. [42,44] can be used for an
analysis. Far above Pc [46, 49, 50] the series data show, similarly to the Monte Carlo results of section
3.2.2, that a simple power law is quite good: log v, cc 511,d fits for d = 2 and •3~dimensionsthe cluster
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Figure 4. Linear (a) and semi-logarithmic (b) representations of the cut-off function of the
normalized size distribution as a function of X = ε sσ . The data are the same as shown in figure
2 with |ε| ! 4.5 × 10−2. The solid lines represent equation (8) and the dashed line represents
equation (9).

stretched exponential, see the dashed line in figure 4(b). Nonlinear least squares fits give

fext(X) = 1.589 ± 0.004 exp

[
−1

2

(
X − 0.641 ± 0.002

0.666 ± 0.002

)2
]

X > 0 (8)

fext(X) = exp
(−2.3 ± 0.1 |X|1.5±0.1) X < 0. (9)

The errors represent again the 95% confident interval. Note that the prefactor of equation (8) is
not a fit parameter, but was chosen such that fext(0) = 1. Kunz and Souillard [15, 16] derived
the limiting behaviour of N(s) for |X| # 1: log N(s) ∝ Xζ with ζ = 1/σ = 2.22 for X > 0
and ζ = 2/(3 σ) = 1.48 for X < 0, where we use again σ = 0.45. It is difficult to obtain data
at |X| > 1 with high accuracy, but the results shown in figure 4 are, at least, compatible with
these predictions.

In figure 5(a) we have plotted the size distributions at ε = 0 for different values of L. The
distribution extrapolated to L → ∞ is represented by the dashed line. For ε = 0 the cut-off

FIGURE 8. Left: the natural log of the scaled cluster yieldsvS= nA(p)/A−τ as a function of the argument of the scaling function
X = Aσ (p− pc)/pc for bond building (p is the bond building probability)d = 3 percolation on a square lattice with 106 sites.
Data from differentp follow the same curve as required by the scaling hypothesis. The parabola is the general form off (X) [41].
Middle: the natural log of the scaled cluster yields as a function ofpcX (solid points) for (a)d = 2 to (f) d = 7 together with the
least-squares fits (solid lines) [45]. Right: the scaled cluster yields plotted as a function ofX = εAσ for |ε| ≤ 4.5×10−2 on a linear
(a) and semi-logarithmic (b) scale; solid lines represents fits to a scaling functionf (X) [154].

tion given by Fisher’s theory and it is this physical interpretation which is important to the application of this method
to the nuclear data.

With these caveats in mind we can proceed, cautiously, and see how both categories of scaling arise in Fisher’s
theory.

Scaling from Fisher’s theory

Starting with the second category of scaling first, namely: data collapse. We start by looking at the cluster concen-
trations in Fisher’s theory given by Eq. (16). Dividing both sides by the power law factor and the chemical potential
factor then gives:

nA(T)

g′0A−τ exp
(

∆µA
T

) = exp

(
−a′sεAσ

T

)
. (36)



This shows that scaling the cluster concentrations by the power law and chemical potential factors against the cluster
surface free energy should collapse the data for each cluster sizeA at each temperatureT to a single curve. Figure 9
shows this type of scaling and data collapse in percolation [191] and Ising model cluster yields [190]

To arrive at the first category of scaling from Fisher’s theory, we combine the general equations for pressure and
density for physical cluster theories, equations (2) and (3), with Fisher’s estimate of the cluster partition function,
Eq. (13) giving

p = T
∞

∑
A=1

g′0A−τ exp

(
∆µA

T

)
exp

(
−a′sεAσ

T

)
andρ =

∞

∑
A=1

g′0A1−τ exp

(
∆µA

T

)
exp

(
−a′sεAσ

T

)
. (37)

Along the coexistence line, i.e.∆µ = 0, we have

pcoex= T
∞

∑
A=1

g′0A−τ exp

(
−a′sεAσ

T

)
andρcoex=

∞

∑
A=1

g′0A1−τ exp

(
−a′sεAσ

T

)
. (38)

At the critical point we have

pc = Tc

∞

∑
A=1

g′0A−τ andρc =
∞

∑
A=1

g′0A1−τ . (39)

Taking the ratios of equations (38) to (39) gives the reduced pressurepcoex/pc and reduced densityρcoex/ρc

pcoex

pc
=

T ∑∞
A=1A−τ exp

(
−a′sεAσ

T

)
Tc ∑∞

A=1A−τ
and

ρcoex

ρc
=

∑∞
A=1A1−τ exp

(
−a′sεAσ

T

)
Tc ∑∞

A=1A1−τ
(40)

which has the advantage of being free of the constantg′0. In order to further test the results above, we determine the
magnetizationM of thed = 3 Ising model using Eq. (40) and recalling that the magnetization per lattice site is simply:

M = 1− ρ

ρc
. (41)

Using the values ofσ , τ, c0 andTc determined from fitting clusters on thed = 3 Ising lattice shown in Fig. 9 [190]
in Eq. (40), Eq. (41) gives one branch of the magnetization curve, the branch forM > 0. Since the magnetization is
symmetric about the origin, the points forM < 0 are reflections of the points forM > 0. The results are shown as
the open circles in the bottom right plot of Fig. 9. These results compare well with a parametrization forM(T) [190]
(used as a “benchmark”) shown as a solid line in the bottom right plot of Fig. 9. Better agreement with theM(T)
parameterization is found when the values ofσ = 0.63946±0.0008,τ = 2.209±0.006 (from the scaling relations in
Fisher’s theory developed below and values ofβ = 0.32653±0.00010 andγ = 1.2373±0.002 [176]),a′s = 12 and
Tc = 4.51152± 0.00004 were used. Nearly perfect results were observed whena′s was “tuned” to 16 and the more
precise value ofTc and the scaling relation exponent values were used. The agreement between the magnetization
values calculated via the sum in Eq. (41) and theM(T) parameterization for 0< T < Tc suggest that the ideal gas
assumptions in Fisher’s theory allow for an accurate description of the system even up to densities as high asρc.

By combining equations (38) and (39) we can arrive at the scaling relations as follows:

ρc−ρcoex

ρc
=

g′0
ρc

∞

∑
A=1

A1−τ

[
1−exp

(
−a′sεAσ

T

)]
'

g′0
ρcσ

Γ
(
−τ−2

σ

)(
a′s
Tc

) τ−2
σ

ε
τ−2

σ = Bε
β (42)

since asT → Tc large values ofA give the dominant contribution to the above sum and the sum may be replaced by an
integral (

∫ ∞
0 yx−1e−ydy= Γ(x)) [38]. Hereβ = τ−2

σ
. This leads directly to the familiar relationρl −ρv ∼ εβ .

Similarly, one finds that along the coexistence line the specific heat at constant volume is [17, 182]

CV = T2 ∂ 2 pcoexV
T

∂T2

∣∣∣∣∣
V

∼ ε
2− τ−1

σ ∼ ε
−α (43)

thusα = 2− τ−1
σ

.



First the value of the probability at the critical point qc is
determined by locating the maximum in the fluctuations of
!1" the size of the largest cluster and !2" #2. Figures 8 and 9
show these measures of the fluctuations. The location of the
maximum is determined as in the EOS data, the data are
smoothed, and then the numerical derivative is taken. The
location of the peak in the largest cluster is averaged with the
location of the peak in #2 and the results are recorded in
Table IV. As expected the value of qc changes with the lat-
tice size.
Note that in Fig. 8 the value of #2 for the L!4 lattice

attains a peak value of only $1.9; this is a finite size effect
and due to the small size of the lattice. Since #2 is related to
the fluctuations in the average size of a cluster, it is clear that
as the size of the lattice decreases, the upper limit in the size
of a cluster decreases, thus imposing a limit on the
size of #2.
Next the cluster yields from the three different lattices are

fit simultaneously to Eq. !6", with qc(L) keeping the fit pa-
rameters % and & consistent between lattices and letting '(
and c0 vary between lattices. Data from 0.4)q)1.05qc and
5)A)3L were included in the fitting procedure. This gives
seven fit parameters with 1083 points to fit. The results are
shown in Fig. 10 and recorded in Table V.
The formula in Eq. !6" used in this analysis is only one

example of a more general form of the scaling assumption
*62,63+

nA!A"& f !X ", !A1"

with X!A%,-/T and where f (X) is some general scaling
function. This scaling function should be valid on both sides
of the critical point. For small X (T.Tc and small A) and
,#0, f (X) will vary as exp("X) with %!1/(/0)!1/(#
$/)!0.64 for d!3 Ising systems or 0.45 for d!3 perco-
lation systems and -!1. For large X (T far from Tc or large
A) and ,#0, f (X) will vary as exp("X) with %!2/3 for all
three dimensional systems and with -!21 , where 1!0.63
for d!3 Ising systems and 1!0.88 for d!3 percolation
lattices.
The fitting procedure using Eq. !6" returned a value of

%!0.44%0.01 and &!2.192%0.003 in good agreement with
other measurements, %!0.45 and &!2.18 *63+. It is clear
from these results that the data examined here are in the
small X , ,#0 region where the approximation of f (X)
given in Eq. !6" is valid. As with the EOS data, the errors
quoted here are from the fitting procedure. Systematic errors
that arise from the use of Fisher’s scaling form and from the
fitting regions in A and q are on the order of $10%.
The value of c0 for the L!6 lattice is in good agreement

with previous measures *36+. The interpretation of the
change in c0 with lattice size will be discussed below.
The values of '( for all lattices are close to zero, in

agreement with the fact that percolation calculations such as
these are at coexistence.

FIG. 10. !Color" The scaled yield distribution versus the scaled bond breaking probability for the L!9, 6, and 4 lattices. The solid lines
have a slope of c0(L).

TABLE IV. Critical points of finite percolation lattices.

L qc 2c pc

9 0.705%0.004 0.210%0.001 0.041%0.001
6 0.685%0.004 0.216%0.001 0.041%0.001
4 0.655%0.004 0.243%0.002 0.044%0.001

TABLE V. Percolation fit parameters.

L '( c0

9 "0.008%0.004 2.62%0.04
6 0.001%0.001 2.42%0.04
4 0.007%0.001 1.91%0.04
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the magentization predicted via Fisher’s theory (see text) and the solid line shows a parameterization for the magnetization.

Finally, one the isothermal compressibility can be found to be [156]

κT =
1
ρ

∂ρ

∂ p

∣∣∣∣T ∼ ε
τ−3

σ ∼ ε
−γ (44)

thusγ = 3−τ

σ
.

The three examples above show how Fisher’s theory leads to the power laws that describe the behavior of a system
near its critical point. Putting the equations definingα, β andγ together recovers the scaling lawα +2β + γ = 2 and
illustrates that (aside from so-called “hyperscaling”) there are only two independent exponents (σ andτ in Fisher’s
theory) from which all others are recovered.

Excluded volume effects on Fisher’s theory

The final entry into this section discussing Fisher’s theory is the effect of the non-zero volume of real, physical
clusters. Fisher’s theory, like any physical cluster theory, assumes that the clusters have no volume. Obviously this is
not the case, so how well does Fisher’s theory do in describing real clusters which have non-zero volume [40]? We have
already seen in Fig. 9 that Fisher’s theory collapses the cluster concentrations of computer models quite well when
the parameters (exponents, critical temperature, surface energy coefficient) are allowed to vary; the values returned for
these parameters from the fitting procedures usually agree well with expected values [185, 190] (with the exception of



σ for thed = 3 Ising model, though that discrepancy may be the result of using clusters that are too small, see Fig. 7
and the discussion above).

In the case of physical fluids the effects of the non-zero volume of clusters at the critical point can be studied by
realizing that Fisher’s theory gives the compressibility factor as the ratio of two Riemannζ functions

pc

Tcρc
= ∑∞

A=1A−τ

∑∞
A=1A1−τ

=
ζ (τ)

ζ (τ−1)
. (45)

When the compressibility factor for real fluids (e.g. He4, Ne, ethane, acetylene, CH3CH, C2H5Cl, etc.) was analyzed
it was found thatτ = 2.202±0.004 which is to be expected ford = 3 systems [25]. This result indicates that for real
fluids the value ofτ is not greatly affected by the finite size of the clusters. An analysis of the “excluded-volume”
effect and Fisher’s theory later showed that the scaling laws (e.g.α +2β + γ = 2) were unchanged [27].

If the exponents and scaling laws are unaffected by the non-zero volume of clusters, then what are the effects of
the non-zero volume of the clusters? To answer this question we turn our attention back to the self-avoiding polygons
[192]. Figure 7 shows that using the directly counted combinatoricsgs,A we were able to reproduce the behavior of
clusters from thed = 2 Ising model on a square lattice, up to a point. The critical temperature predicted by the self-
avoiding polygonsTc = 2.06 is approximately 10% below Onsager’s analytically determined valueTc = 2.26915. . .
[5].

To improve the above estimate ofTc, at coexistence, we think of an initial configuration of a cluster withA0 → ∞
constituents and surfaces0 and a final state of a cluster ofA constituents and surfaces and its complement: a cluster
of Ac = A0−A constituents and surfacesc. This assumes stochastic cluster formation and is supported by the Ising
cluster’s Poissonian nature [190]. Now the free energy of cluster formation is

∆G = ∆E−T∆S+ pcoex∆V = aV [A+(A0−A)−A0]+as(s+sc−s0)−T
(
lngs,A + lngsc,Ac− lngs0,A0

)
+ p∆V (46)

∆V is the volume change between the initial and final configurations. All terms∝ A cancel. In the limitA0→∞, sc≈ s0
and lngsc ≈ lngs0 leaving only the cluster’s contribution to the∆G. The volume change for the lattice gas is

∆V = a1 [A+(A0−A)−A0]+ l(s+sc−s0) (47)

wherea1 is the geomertrical prefactor relating the cluster volume to the cluster numberA andl is the interaction range
between two constituents, one spacing on a lattice:l = 1. The second term of Eq. (47) arises from the fact that no two
clusters can come within a distancel of each other and be considered two clusters, thus each cluster has a volumels
surrounding it which is excluded to all other clusters.

In in theA0 → ∞ limit the first term of Eq. (47) cancels. The second term of Eq. (47) depends only on the cluster’s
surface. Writing the partition function for a cluster asqs(V,T) ∼ exp(−∆G/T) [38] and now including the excluded
volume factor from Eq. (47) gives

ns(T)∼ gsexp
(
−ass

T

)
exp

(
−2pcoexls

T

)
∼ g0s−x exp

[
−s(as−Tbs+2pcoexl)

T

]
. (48)

The factor of two arises from moving the cluster from one phase to the other: imagine taking a cluster from the
condensed phase, which leaves behind a bubble, and placing it in dilute phase. Both the bubble in the condensed phase
and the cluster in the dilute phase have the associated excluded volume contribution ofls.

Just as above, the “microscopic” portion of the surface free energy vanishes at the critical point so

Tc =
as+2pcl

bs
=

as

bs
+

2pcl
bs

. (49)

The first term in Eq. (49) can be thought of as the “ideal” critical temperature and the second term can be thought of
as the correction that arises due to the non-zero volume of the cluster. Working at the critical point withpc ≈ 0.11 for
thed = 2 Ising model, Eq. (49) givesTc = 2.29, within 1% of the Onsager value [5].

Equation (48) also provides a good description of Ising cluster yields. Figure 10 shows the Ising yields (nA(T) =
∑sns,A(T)) of a two dimensional square lattice of sideL = 80 and the predictions of Eq. (16) and (48) (both
at coexistence and both using the directly countedgs,A combinatorics of the self-avoiding polygons) withno fit
parameters.
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solution (solid line), fromd = 2 Ising calculations on the square lattice [203] (open circles), from Eqs. (38) and (16) (filled circles)
and from Eqs. (38) and (48) (filled squares).

Figure 10 also shows the integrated quantities of the density and pressure along the coexistence line for thed = 2
Ising system. The values ofρcoex and pcoex determined from calculations on the square lattice [203] (open circles),
from Eqs. (38) and (16) (filled circles) and from Eqs. (38) and (48) (filled squares) are compared to the analytical
solution of Onsager (solid line) [5]. One can still assume that the formation of clusters exhausts all the non-idealities
and simply calculate the pressure and density from the self-avoiding polygon combinatorics and the finite cluster
volume concentration, the equations

pcoex= T ∑
s,A

gs,Aexp

[
−s(as+2pcoexl)

T

]
andρcoex= ∑

s,A

Ags,Aexp

[
−s(as+2pcoexl)

T

]
. (50)

were solved iteratively usingas = 2 and the directly countedgs,A [180]. As one might expect, at low temperatures,
where the dilute phase is very dilute, the “ideal” expressions of Eqs. (38) and (16) work quite well. However as
the temperature increases and more and more clusters appear in the dilute phase the “ideal” expressions fail and
predict, as expected based on the cluster concentration predictions, pressure and density values that are higher than the
Onsager solution [5]. The non-zero volume expressions of Eqs. (38) and (48) follow Onsager’s solution and the Ising
calculations more closely.

The conclusion of this exercise is that a∼ 10% change inTc from the “ideal” estimate is enough to approximately
offset any effects of the non-zero volume of the clusters. Thus by leavingTc as a free parameter when fitting cluster
concentrations, or by obtainingTc from other methods (e.g. the Onsager solution for the Ising model on a square lattice
[5]), one accounts, for the most part, for the effects associated with the non-zero volume of the clusters.

Summary

We have seen that Fisher’s theory is a physical cluster theory. Fisher’s main contribution was to introduce an accurate
approximation for the entropic contribution to the cluster partition function. This lead to the development of a theory
that shows both types of scaling: the singular behavior of quantities near that critical point and the scaling laws that
relate exponents as well as the data collapse of cluster concentrations. Fisher’s theory has an unphysical surface tension
above the critical temperature, however belowTc it serves as a good approximation that lends itself easily to a physical
interpretation. Though Fisher’s assumption about the mean surface of a cluster is crude (using a constant values for
a0 andσ ignores the temperature dependence of the mean surface of a given cluster size) and it explicitly ignores the
non-zero volume of the clusters (though implicitly the finite volume is almost all accounted for by the proper choice of
Tc) it has successfully: described cluster production in percolating systems and Ising systems (see above); reproduced
the compressibility factor at the critical point (see above); predicted (within a few percent) the compressibility factor



NEUTRON EVAPOEATION AND LEVEL DENSITIES IN EXCITED NUCLEI 39 

1o0 

10- 

1.o ̧  

o.1 

i i o 1 i 

O 2 4 @ 8 10 12 
NEUTRON ENERGY (MeV) 

Fig. 2. Logarithmic plot of 

1 
- -  T °. i~ % (T) for  Al.  
o" c 

1OO 

10 

1.O 

O,1 

NEUTRON ENERGY (MeV) 

Fig. 8. Logarithmic plot of 
1 
- - T - ° . ° l S ~ ( T )  for Ni. ere 

100 

10 

10 

01 

, i 1 ; i i 
0 2 4 6 S 10 12 

NEUTRON ENERGY (M, eV) 

Fig. 4. Logarithmic plot of 
1 
- -  T - ° a S Z ( T ) f o r  Ag. 
o" o 

100" 

1o. 

! 

o.1 

NEUTRON ENERGY (MeV) 

Fig. 5. Logarithmic plot of 
1 
-- T-° .2~Z(T) for Au. ~a 

100 

I0 

1.0 

01 

NEUTRON ENERGY (MeV) 

Fig. 6. Logarithmic plot of 
1 --T-O.lt~(T) for U. 

o'c 

slope 1/8, from which the thermodynamic parameter a may be determined. 
We used Beyster's ') optical model calculations of the neutron capture 
cross section ac, which differ very slightly from the results given in Blatt 
and Weisskopf 8) as used by Gross 2). Results for five elements are presented 
in table 3 and figs. 2 to 6. 

The figures show that the spectrum (4.3) represents the observed spectra 
within the accuracy of observation, and assuming U proportional to T z, 

NEUTRON EVAPOEATION AND LEVEL DENSITIES IN EXCITED NUCLEI 39 

1o0 

10- 

1.o ̧  

o.1 

i i o 1 i 

O 2 4 @ 8 10 12 
NEUTRON ENERGY (MeV) 

Fig. 2. Logarithmic plot of 

1 
- -  T °. i~ % (T) for  Al.  
o" c 

1OO 

10 

1.O 

O,1 

NEUTRON ENERGY (MeV) 

Fig. 8. Logarithmic plot of 
1 
- - T - ° . ° l S ~ ( T )  for Ni. ere 

100 

10 

10 

01 

, i 1 ; i i 
0 2 4 6 S 10 12 

NEUTRON ENERGY (M, eV) 

Fig. 4. Logarithmic plot of 
1 
- -  T - ° a S Z ( T ) f o r  Ag. 
o" o 

100" 

1o. 

! 

o.1 

NEUTRON ENERGY (MeV) 

Fig. 5. Logarithmic plot of 
1 
-- T-° .2~Z(T) for Au. ~a 

100 

I0 

1.0 

01 

NEUTRON ENERGY (MeV) 

Fig. 6. Logarithmic plot of 
1 --T-O.lt~(T) for U. 

o'c 

slope 1/8, from which the thermodynamic parameter a may be determined. 
We used Beyster's ') optical model calculations of the neutron capture 
cross section ac, which differ very slightly from the results given in Blatt 
and Weisskopf 8) as used by Gross 2). Results for five elements are presented 
in table 3 and figs. 2 to 6. 

The figures show that the spectrum (4.3) represents the observed spectra 
within the accuracy of observation, and assuming U proportional to T z, 

FIGURE 11. The scaled energy distributions of neutrons (Wn(E )
σ(E0,E )E 1−i vs.E ) evaporated from (left to right): Al, Ni, Ag and Au

nuclei after bombardment from 190 MeV protons [11]. The slopes of the lines give the inverse of the effective temperature of
evaporation.

of real fluids from the triple point to the critical temperature [29, 88]; and has been used to describe the nucleation rate
of real fluids [31, 75].

A BRIEF HISTORY OF NUCLEAR CLUSTER PRODUCTION

I n the beginning there was neutron evaporation[3, 4], and the evaporation was good[11]. . .

It was noted long ago that statistical methods could be applied to nuclear processes if the energies involved are
large when compared to the lowest excitation energies of nuclei [3]. By doing this, Weisskopf was able to formulate
expressions for the probability of neutron (or charged particle) emission from excited nuclei. Weisskopf based his work
on evaporation from a body at low temperatures. In that regard, Weisskopf was working out the formula to describe
the evaporation of neutrons from a hot nucleus, i.e. he was describing a first order phase transition in nuclear matter
with a neutron leaving the condensed phase (the hot nucleus) and entering the dilute phase (a very low density neutron
vapor).

Following Bohr, Weisskopf divided processes initiated by nuclear collisions into two stages: the first was the
formation of a compound nucleus and the second was the disintegration of the compound nucleus. Both stages could
be treated independently. The energy of the compound nucleus is similar to the heat energy in a solid or liquid and
the emission of particles from the compound nucleus is analogous to an evaporation process and Weisskopf derived
a general statistical formula for the evaporation of particles from an excited compound nucleus (with the caveats of
the finiteness of the nucleus and the fact that the evaporation of a particle takes away significant energy from the
compound nucleus).

The probability per unit time of a nucleusA0 with excitation energyE∗ emitting a neutron of massmn with kinetic
energy betweenE andE +dE (wheredE is much larger than the levels ofA0), thus transforming itself into nucleus
Ac with an excitation energyE∗−E0−E (whereE0 is the neutron binding energy ofA0) is

Wn (E )dE = σ (E0,E )
mnE

π2h̄3 exp

{
−

E −T
[
lng+SA0−SAc− f (E )

]
T

}
dE (51)

whereσ (E0,E ) is the mean cross section for the collision of a neutron of kinetic energyE with nucleusAc of energy
E∗−E0− E resulting in the production of nucleusA0 of energyE∗; g is the number of states for the spin of the
particle under consideration;S(E) = lnω(E) corresponds to the entropy of a nucleus with and energy betweenE and
E +dE (and density of levelsω(E)); T is the temperature at whichE is the most probable energy of nucleusAc; and
f (e) “contains all further terms of the development.” The probability per unit time for the evaporation of particles of



nucleon numberA, chargeZ and massmA from nucleusA0 is

WA (E )dE = πR2
0

(
E −e2 Z0Z

R0

)
mA

π2h̄3 exp

−E +e2 Z0Z
r −T

[
lng+SA0−SAc− f (E −e2 Z0Z

R0
)
]

T

dE (52)

whereR0 is the radius of the compound nucleus andZ0 is its charge. It is no surprise, given that Weisskopf had
evaporation in mind, that equations (51) and (52) are similar to Fisher’s estimate of the cluster partition function given
in Eq. (12).

Multiplying the total probability of particle emission bȳh then gives the decay width: for neutrons:

Γn = σ
mn

π2h̄2 T2exp
(
lng+SA0−SAc

)
(53)

(whereσ is the mean value ofσ (E0,E ) f (E ) averaged over the Maxwell distribution) and for charged particles

ΓA = σ0
mp

π2h̄2 T2exp
(
lng+SA0−SAc

)
. (54)

Thus Weisskopf developed a theory of nuclear evaporation, i.e. a theory of first order phase transition in finite, charged,
asymmetric nuclear matter.

Experimental evidence of neutron evaporation appeared in the energy distributions of neutrons measured after
various nuclei were bombarded with 190 MeV protons [11]. Equation (51) gives the probability of the evaporation of a
single neutron from a single compound nucleus at a specific excitation energy. However, experimental measurements
of neutron kinetic energy distributions were measured for neutrons that came from a cascade of successive evaporations
from compound nuclei with a distribution of initial excitation energies. Thus to connect Eq. (51) with the experimental
measurements the successive neutron (and proton) evaporation and distributions of initial excitation energies had to be
taken into account which gives [11]

Wn (E )dE ∝ σ (E0,E )
(

E

T

)i−1

exp

(
−E

T

)
1
T

dE (55)

wherei is the generation of the evaporation. Figure 11 shows logarithmic plots of scaled neutron energy distributions
( Wn(E )

σ(E0,E )E 1−i vs.E ) follow a straight line whose slope is the inverse of the effective temperature of evaporationT. The
plots in Fig. 11 are similar to the Arrhenius plots of nuclear cluster yields observed latter [121], as such they present
early evidence for thermal scaling in nuclear evaporation.

The thermal nature of cluster production in nuclear reactions was seen to extend all the way to fission [12, 20, 81,
92, 102]. The fission cross probability and fission cross section can be written as

Pf =
σf

σ0
and σf = σ0

Γf

ΓT
(56)

where

Γf = T
ρs(E∗−Bf −Es

r )
2πρ

(
E∗−Egs

r
) (57)

Γf andΓT are the fission and total decay widths,Bf is the fission barrer,ρs is the saddle-point level density,ρ is the
compound nucleus level density andEs

r andEgs
r are the saddle and ground-state rotational energies.

For large excitation energies (E∗� Bf , E∗� Es
r andE∗� Egs

r ) the fission width is

Γf =
Tρs(E∗−Bf)

2πρ (E∗)
' Tρs(E∗)

2πρ (E∗)
e−

−Bf
T ' T

2π
e−

Bf
T , (58)

where the Boltzmann factor arise from the first-order term in the Taylor expansion of lnρs(E∗−Bf). Then in the limit
that the nucleus behaves as a Fermi gas withT =

√
E∗/a the natural logarithm of the fission probability should go as

lnPf ' ln
Γf

ΓT
'A − B√

E∗
(59)



FIGURE 12. Left: The fission probabilityPf as a function of the inverse of the square root of the excitation energyE∗−1/2 for
the reactions206

82 Pb(4H, f ), 197
79 Au(4H, f ) and 184

74 W(4H, f ) [20]. Middle: (a) The fission probabilityPf plotted as a function of

E∗−1/2 for the α induced reactions206Pb(α, f ), 197Au(α, f ) and184W(α, f ) and (b) the electron induced reactions209Bi(e, f ),
208Pb(e, f ), 174Yb(e, f ) and154Sm(e, f ) [81]. Right, top: the logarithm of the reduced mass-asymmetric fission rateRf divided by
2
√

an as a function ofE∗−1/2 for the compound nuclei75Br, 90Mo, 94Mo and110,112In [92]. Right, bottom: the logarithm of the

reduced mass-asymmetric fission rateRf divided by 2
√

an as a function ofE∗−1/2 for the compound nuclei186,187,188Os,201Tl,
203,204,205,206,208Pb,208,210,211,212Po and213At [102].

whereA andB are constants. Consequently, a plot of the natural logarithm of the fission probabilities versus 1/
√

E∗

should be linear. This is just the case as is shown for several fission reactions in Fig. 12 [20, 81].
For lower excitation energies and nuclei withBf � Bn (the neutron evaporation barrier):ΓT ' Γn. Then Eq. (56)

can be rewritten as

ΓnPf
2πρ

(
E∗−Egs

r
)

T
= ρs(E∗−Bf −Es

r )' e2
√

af(E∗−Bf−Es
r ), (60)

where we have assumed a simplified form of the Fermi gas level density, and therefore,

1
2
√

an
ln

[
ΓnPf

2πρ
(
E∗−Egs

r
)

T

]
=

lnRf

2
√

an
=

√
af

an
(E∗−Bf −Es

r ) (61)

whereaf andan are the level density parameters associated with the fission saddle point and the ground state andRf is
the reduced mass-asymmetric fission rate. The neutron width can be approximated as

Γn '
2mnR2g

h̄2 T2
n

ρ
(
E∗−Bn−Egs

r
)

2πρ
(
E∗−Egs

r
) (62)

whereBn is the last neutron binding energy,Tn is the temperature after neutron evaporation andR is the radius of the
compound nucleus.

For fission excitation functions in the Pb region, strong shell effects make the approximation

ρ (E−Bn−Egs
r ) ∝ e

2
√

an(E∗−Bn−Egs
r ) (63)

a very poor one. However, for excitation energies higher than 15–20 MeV, the level density assumes its asymptotic
form [32]:

ρ (E−Bn−Egs
r ) ∝ e

2
√

an(E∗−Bn−Egs
r −∆shell), (64)



FIGURE 13. The inclusive cluster yieldsnA as a function of cluster sizeA from the reaction of 80≤ Ebeam≤ 350 GeV protons
incident on xenon (left [49]) and krypton (right [53]) nuclei. Solid lines show a fit to the data with a power law.

where∆shell is the ground-state shell effect of the daughter nucleus after neutron evaporation. Assuming this asymp-
totic expression for the level density after neutron evaporation, the fission excitation functions can be fit with Eq. (56)
using∆shell as a free parameter in the expression forΓT ' Γn [102].

Thus, a plot of the left hand sige of Eq. (61) (which can be constructed from measured fission cross sections and
known non fission channels (mostly neutron evaporation)) versus

√
E∗−Bn−Es

r should be linear (actually a 45◦ line
for af = an). That this is so can be seen in Fig. 12 [92, 102], where a large number of fission excitation functions scale
exactly to the same straight line illustrating the thermal nature of cluster production in nuclear fission reactions.

If the analogous behavior of evaporation from excited nuclei and evaporation of classical fluids holds, then one
expects that as the temperature increases the first order phase transition (evaporation) becomes a continuous phase
transition at a critical temperatureTc above which there is a smooth cross over from the liquid-like phase of ordinary
nuclear matter encountered at low excitation energies to a gaseous phase where the average interparticle distance
is much larger that the range of the interparticle interaction. Thus, when inclusive (i.e. the average cluster yield for
a given cluster sizeA was generated by averaging over all excitation energies) cluster yields from the reaction of
80≤ Ebeam≤ 350 GeV protons incident on krypton and xenon nuclei exhibited a power law (as expected fornA(Tc) in
Eq. (16)) with an exponentτ between 2 and 3 (as expected ford = 3 systems [41]) it seemed possible that the critical
temperature had been reached [49, 50, 52, 53].

An analysis of the isotopic cluster yields provided further evidence that the clusters arising from the p+Xe and
p+Kr reactions were thermal in nature and perhaps critical. The measured inclusive yields were fit to a version of
Fisher’s theory modified to account for the nuclear aspects of the fluid in question. Specifically the yieldsY(A,Z) of a
cluster withA nucleons,N neutrons andZ protons were fit with the following parameterization [50, 53]

Y(A,Z) = CA−τ exp

aVA−a′sA
2/3−aC

Z2

A1/3 −aa
(A−2Z)2

A −δ + µNN+ µZZ

T
+N ln

N
A

+Z ln
Z
A

 (65)

with δ = apA−3/4 for odd-odd nuclei,δ = 0 for odd-even nuclei andδ =−apA−3/4 for even-even nuclei. Here Fisher’s
theory has been modified to use Weizäcker’s semiempirical mass formula (the first five terms in the Boltzmann factor)
and a chemical potential for neutrons and protons (the last two terms in the Boltzmann factor). The final terms in the
exponential in Eq. (65) take into account the entropy of mixing protons and neutrons. Figure 14 shows the results for
the 59 different isotopes from the p+Kr reactions and 62 different isotopes from the p+Xe reaction fit to Eq. (65) with
the free parameters and results given in Table 1.



FIGURE 14. Top (bottom): the isotopic inclusive cluster yieldsY(A,Z) as a function of cluster sizeA from the reaction of
80≤ Ebeam≤ 350 GeV protons incident on xenon (krypton) nuclei [50, 53]. Circles represent data, while squares are the fit
according to Eq. (65). The dashed and solid lines are drawn to guide the eye.

TABLE 1. Values for the parameters in the fits to the isotopic yields. These values were calculated by fixingaV = 14.1 MeV
and leaving the remaining parameters free [50, 53].

Parameter aV (MeV) a′s (MeV) aC (MeV) aa (MeV) ap (MeV) µP (MeV) µN (MeV) T MeV τ

Nominal
value 14.10 13.00 0.60 19.00 33.50 2.21

p+Kr 14.10 5.53 0.49 22.66 5.92 −11.32 −7.59 3.28 2.64

p+Xe 14.10 6.61 0.40 23.30 5.28 −11.01 −7.62 3.24 2.65

In a similar analysis [69], the inclusive cluster yields (3≤ Z ≤ 14) from the reaction of p+Xe was fit to Fisher’s
theory in a more generic form

nA(T) = q′0A−τXAσ

YA (66)

where the surface free energy contribution is found inX = exp(−a′sε/T) and the chemical potential contribution id
found inY = exp(∆µ/T). The energy of the incident proton was varied fromEbeam= 1 GeV toEbeam= 18 GeV.
At each beam energy the inclusive cluster yields were fit to Eq. (66) with the normalization andX andY left as free
parameters and the exponentsσ andτ were fixed to theird = 3 Ising values. Figure 15 suggests that at low beam
energies the system is super saturated (Y ≥ 1 indicates that∆µ ≥ 0) and there is a sizeable surface free energy cost
in cluster formation. As the beam energy is increased, the system moves towards coexistence (Y → 1) and the surface



FIGURE 15. The parametersX (related to the surface free energy) andY (related to the chemical potential) obtained from a fit
of inclusive cluster yields (3≤ Z≤ 14) from the reaction of p+Xe (1≤ Ebeam≤ 20 GeV) to Eq. (66) [69].

FIGURE 16. Left: the pressure as a function of volume; the dashed curves show the van der Waals fluid and the solid curves
show the results for a system interacting through a Skryme force [51]. Middle: The nuclear cluster yields of reference [49] fit with
the theory of refrence [57]. Right: the outer solid curve is the temperature-density coexistence curve, the middle solid curve is
the isothermal spinodal and the inner solid curve is the isentropic spinodal; dashed curves show trajectories for constant entropy
expansion (top) and constant energy expansion (bottom) [64].

free energy vanishes (X → 1). For beam energies above 12 GeVX = Y = 1 and the cluster yields are well fit by a
power law.

While the results of the analysis of the above two experiments are not completely clear, it is clear that the clusters
created in these reactions are well described as a thermal phenomenon. Regardless of whether the critical point was
reached, the inclusive cluster yields for three different reactions over a wide range in excitation energies were well fit
by Fisher’s theory. Using Fisher’s theory to describe the cluster emitted from highly excited nuclei was, in hindsight,
a natural extension of the theoretical work of Weisskopf [3] and the experimental work on neutron evaporation [11].
Specifically the extension of Weisskopf’s particle evaporation probabilities to include Fisher’s estimates of the entropic
cost of cluster formation is much the same as the actual development of physical cluster theories [182].

The above experimental results stimulated much theoretical interest in the possibility of critical phenomena in
nuclear matter [51, 56, 57, 58, 62, 63, 64, 70, 71, 78, 80, 83, 84, 86, 87, 91, 93, 98, 99, 103, 104, 112, 115, 117, 127,
137, 144, 147, 157, 173, 178]. These efforts can be separated into two different categories: analytical/semi-analytical
theories [51, 56, 57, 62, 63, 64, 99] and computational models: both on a lattice [58, 70, 71, 78, 80, 83, 84, 98, 104,
115, 117, 127, 137, 147, 157, 173] and off [86, 87, 91, 93, 103, 105, 112, 116, 118, 130, 135, 144, 168, 172, 174, 177,
178, 206].
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temperature  of  around 12 MeV, which has therefore 
been identif ied with T c [13] .  

There has also been an a t tempt  to explain the gen- 
eral behaviour of  X(T) using purely Coulomb-tunnel -  
ing effects [ 14].  

We can use our  model  to calculate X as a funct ion  
of  p ,  and in fig. 3a we show our results. It is clear 
that  there is a m i n i m u m  at p = 0.7, X = 2.17, similar 
to that  described above for the l iqu id -gas  phase-tran- 
si t ion theory.  However, this result is only  a conse- 
quence of  the percolation-like ingredients of  our mod- 
el, and we make no connect ion  o f p  with a " tempera-  
ture" .  

In fig. 3b we use the result from fig. 1 that  the 
average mult ipl ic i ty ,  ~ ,  of  fragments also mono ton i -  
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FIGURE 17. Results from from percolation models. Left: the dependence of the cluster yields as a function of the bond breaking
probability (top:q= 0.35, middle:q= 0.60, bottom:q= 0.80) for the reaction p+Xe [58]. Middle top: a doubly logarithmic plot of
the mass yield forq= 0.6 for the reaction p+Xe, the straight line shows the power lawA−2.52 [58]. Middle bottom: a comparison of
the data from ref. [61] (open circles) and the percolation model [71] (solid line). Right: the second moment of the cluster distribution
as a function of the cluster multiplicity for the reaction of 1 AGeV Au+C: histogram: percolation [98]; circles: data [85].

The analytical/semi-analytical theories employed various methods (e.g. particles interacting through a Skyrme force,
finite temperature Hartree-Fock theory and another nuclear extension of Fisher’s theory) to determine the critical point
of bulk (i.e. infinite, uncharged and symmetric) nuclear matter and the liquid-vapor phase boundary. This lead to
estimates of the critical temperature in the range of 12.6 MeV to 28.9 MeV depending on the theoretical techniques
employed. Once estimates were made for bulk nuclear matter, the effects of a finite number of nucleons and a fluid
made up of two components (one which carries an electric charge) were studied. Those effects generally lead to a
lower critical temperature with estimates between 8.1 MeV and 20.5 MeV.

Computational models on the lattice attempted to study the process of nuclear cluster formation from “the bottom
up” by modeling in a simple way the short range interaction of the nucleons. This was done both geometrically with
perolation models [58, 70, 71, 78, 80, 83, 84, 117] and thermally with lattice gas (Ising) models [104, 115, 127, 137,
147, 157, 173].

The percolation model describes the excited nucleus in question as a lattice with nucleons at every vertex. The
distance between each vertex, or the lattice spacing, depends on the density of normal nuclei,ρ0 and is approximately

ρ
1/3
o ∼ 1.8fm. Bonds between the nucleons are broken with a probabilityq(E∗) that depends on the excitation energy

E∗ of the system: the greater theE∗ the higher the value ofq [58, 71, 83]. This mapping of excitation energy onto
bond breaking probability is similar to the mapping of a ferromagnetic Potts model onto a corresponding percolation
model [24, 28, 44, 83]. Thus the percolation model becomes an Ising model and the success in describing a thermal
phenomenon such as cluster production from an excited nucleus is to be expected. Figure 17 shows that the percolation
model was able to reproduce many of the observations of the experimental measurement: the cluster yields were
described by a power law at some value ofq(E∗) and matched experimental measurements. The model also gave
indications of what would be expected for exclusive cluster yields, i.e. cluster yields that could be separated based
on some measure of the excitation energy of the reaction. The percolation model was compared with data from many
other reactions and studied the influence of the shape of the lattice boundary (e.g. spherical [78] and toroidal [80]) and
has successfully described the clusters arising from excited gold nuclei [98, 169].
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[ 18 ] we have shown analysing event by event the ex- 
perimental charge distributions measured in ref. [ 4 ] 
and those calculated in a simple percolation model 
that both systems break up in rougly the same way. 

We turn now to the following question: Is there or 
is there not some critical phenomenon which mani- 
fests itself in nuclear breakup and if so, what form 
does it take? We believe the answer to this question 
is positive and that this fact should be addressed when 
interpreting the nuclear data. The method we use here 
consists in a comparison of observable quantities that 
behave in a qualitatively different way when a phase 
transition is present or not. These quantities are the 
conditional moments of the fragment size distribu- 
tions. The problem of the finite size is dealt with (at 
least partially) by comparing nuclear data with pre- 
dictions of model systems of similar size. We con- 
sider the partitions of the following systems: 

(a) A linear chain with So lattice sites. Neighbour- 
ing sites can be connected by bonds. Each of these 
bonds is randomly activated with probability p. A 
fragment (or cluster) is an ensemble of neighbouring 
sites connected by active bonds. Varying the param- 
eter 0 > p > 1 we change the shape of the fragment size 
distribution but we know [7] that in one-dimen- 
sional systems we can never have a phase transition. 

(b) The same model (percolation) but in a three- 
dimensional cubic lattice. In this case we know that 
when So--,~ and p--,0.25 we have a sharp second- 
order phase transition (see below). 

(c) A beam of 1 GeV/A Au ions bombards an 
emulsion [4 ]. Practically all charges z of the Au frag- 
ments have been measured for 367 events (low en- 
ergy fission events are not included in our analysis). 
We believe that all fragmentation regimes have been 
covered by this experiment because fragment multi- 
plicities range from 1 to 79. 

Each partition {S 1 ~ S 2 ~ ... ~ Sin} contains a number 
of fragments m ( 1 ~< rn ~< So). We define ~ ( s ,  n ) as the 
average number of fragments of size s produced in 
the events with multiplicity n=m/So. The largest 
fragment s,n produced per event is counted sepa- 
rately. We define a quantity P(n) which is the aver- 
age value of sin~So in events with multiplicity n. For 
the distribution (c), we take s=z  (the measured 
charge of the fragments) and So= 79 (the total charge 
of the breaking system). Now we characterize the 

fragment size distribution 
moments 

mk(n) = ~ s~X(s, n)/So 

by the conditional 

(2) 

Remark that mo(n) = n -  l/So and ml (n) = 1 - P ( n ) .  
Fig. 1 shows that rn2 (n) is the same for nuclear data 

points (full circles) as given by model (b) (open cir- 
cles) but is qualitatively different than model (a) 
(crosses). The maximum of rnz at n~0.25 is the 
manifestation of a phase transition. The broad max- 
imum instead of a singularity is due to the finite size 
of  the system. This is shown in fig. 2, where m2(n) is 
plotted for various system sizes (503, 9 3, 5 3 and 3 3) 
of model (b).  We see clearly the critical bebaviour 
for the largest system and how it is smoothed when 
decreasing the size. 

More insight in the shape of the fragment size dis- 
tribution Y(s ,  n) is obtained looking at a combina- 
tion of moments ink. For example, the quantity 

)'2 =m2"mo/m 2 (3) 

takes the value )'2 = 2 for a pure exponential distribu- 
tion Y ( s )  ~ exp( - o~s) regardless the value ofoz, but 
9'2 >> 2 for a power-law distribution X ( s )  Ms-~ when 
z> 2. In fig. 3 we have represented )'2 as a function of 
n for the experimental distribution (c) ( top) and for 

10 7 

10 o 

16' 

162 

16 s 

O 

O 

I I I I I I , i , i I r , ¢ , I , , , ~ I I 

0 0.25 0.5 0.75 1 
r~ 

Fig. 1. The conditional moments rn 2 (n) (eq. ( 2 ) ) for model (a): 
one-dimensional model (crosses); model (b): three-dimen- 
sional percolation model (open circles); and model (c): experi- 
mental gold fragmentation (full circles), as a function of the 
reduced multiplicity n. 
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Fig. 4. Average size P(n) (a) of the largest fragment produced 
per event (normalized to So) and its fluctuation (standard de- 
viation) AP(n) (b) as a function of the reduced multiplicity n. 
For: one-dimensional model (model (a)) (crosses); three-di- 
mensional percolation model (model (b)) (open circles); and 
experimental gold fragmentation (model (c)) (full circles). 

da ta  po in t s  o f re f .  [ 4 ]. T h e  m a i n  conc lus ions  are  tha t  
and  the ra t io  fl/? are  ra ther  s imi la r  in Au  b r eakup  

and  in l i q u i d - g a s  o r  pe rco la t ion  theor ies  and  differ-  
en t  f r o m  the  m e a n  f ie ld  predic t ions .  H o w e v e r ,  be t t e r  
da ta  is needed  for  a def in i te  c lass i f ica t ion  o f  the  
t rans i t ion .  

In  summary ,  nuclei  break up like f ini te  systems that  
show up a c lean phase  t r ans i t ion  in in f in i te  size. In  
the  " c r i t i c a l "  reg ime  f luc tua t ions  are  s t rongly en-  
hanced.  The  na ture  o f  the t rans i t ion  is no t  yet known.  

T h e  a u t h o r  is i n d e b t e d  to Jo rg  Hi i fne r  and  to S teve  
T o m s o v i c  for  f rui t ful  discussions.  
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FIGURE 18. From left to right: a plot of the natural log of the third moment of the cluster distribution as a function of the natural
log of the second moment for nuclear clusters [59, 66]; a plot of the natural log of the third moment of the cluster distribution as a
function of the natural log of the second moment for bond percolation on the simple cubic lattice [66]; the second moment of the
cluster distribution as a function of the total cluster multiplicity for nuclear data (full circles), percolation on the simple cubic lattice
(open circles) and percolation on a line (crosses) [70]; the size of the largest cluster as a function of the total cluster multiplicity (see
previous plot for symbol definition); and the fluctuations in the size of the largest cluster as a function of total cluster multilpicity
[70]. See text for discussion.

A complete (every cluster measured), exclusive data set of the clusters from the reaction 900 AMev Au+emulsion
[59] was compared to the clusters from bond percolation on the simple cubic lattice with 216 sites [66, 70]. The
moments from each cluster distribution were calculated as

Mk (T) =
A<Amax

∑
A=1

AknA (T) . (67)

whereAmax is the size of the largest cluster in a given event or lattice realization. In the case of the percolation
moments,T was replaced with the bond probabilityq according to common practice [41]. In the case of the nuclear
moments,T was replaced by the total cluster multiplictym (more specifically the total charged particle multiplicity)
and the nucleon numberA of the cluster was replaces with the charge of the clusterZ. The moments of the cluster
distribution were used to determine the value ofτ by plotting the third momentM3 as a function of the second moment
M2 and recalling (see above discussion on scaling from Fisher’s theory or reference [41]) that for

Mk ∝ |ε|
τ−1−k

σ (68)

so thatM3 ∝ M
τ−4
τ−3
2 . Thus the slope of a plot of lnM3 as a function of lnM2 is related to the exponentτ and for both

percolation clusters and nuclear clusters this analysis yieldedτ = 2.2±0.2 [66]. On a more qualitative level, a plot of
the natural log of the size of the largest clusterAmax (or the charge of the largest nuclear clusterZmax) as a function of
lnM2 shows two branches. This is also shown in Fig. 18 where the upper branch can be thought of as the condensed
phase (all particles in a single large cluster) and the lower branch can be thought of as the dilute phase (all particles in
small clusters). Finally, comparisons of the second moment, largest cluster size and fluctuations in the largest cluster
size all as a function of total cluster multiplicity shown in Fig. 18 show a similarity between the nuclear data (full
circles) andd = 3 percolation (open circles) but not withd = 1 percolation (crosses) a system without a phase transition
[41]. The conclusion of this analysis was that nuclear clusters are produced from a system that behaves as finite systems
which have a phase transition in the infinite limit. Behavior of this sort for the second moment of the cluster distribution
and size of the largest cluster has been observed in many experiments [82, 138, 145, 156, 175, 181, 184, 185, 204].

In reactions of 600 AMeV Au on various targets (C, Al, Cu and Pb) a high degree of universal scaling behavior
was observed [77, 79, 82]. Figure 19 shows the behavior of the mean charge of the largest cluster〈Zmax〉, the value
of τ of the cluster distribution, the mean number of intermediate mass clusters (where an IMC is defined as clusters
with charge 3≤ Z≤ 30) 〈MIMC〉 and the mean longitudinal velocity of a cluster

〈
β‖

〉
and the ratio of the clusters’ root

mean square deviations of the transverse and longitudinal velocity rms(β⊥)/rms
(
β‖

)
all as a function of the violence

of collision (the more violent the collision, the higher the temperature). The universal scaling behavior associated with
measures of the cluster yields indicated that the cluster yields did not depend on the target but on the energy deposited
by the collision and is a necessary—though not sufficient—condition for chemical equilibrium being established. The
universal scaling behavior of

〈
β‖

〉
and rms(β⊥)/rms

(
β‖

)
are compatible with the assumption of a kinetic equilibrium



FIGURE 19. Left: From top to bottom: the mean charge of the largest clusterZmax, the value ofτ of the cluster distribution,
the mean number of intermediate mass clusters (where an IMC is defined as clusters with charge 3≤ Z ≤ 30) 〈MIMC〉 plotted as
a function of the estimate of the energy deposited into the excited nucleus [77]. Middle:〈MIMC〉 plotted as a function of the the

summed charge for all clusters withZ≥ 2 Zbound [79]. Right: The mean longitudinal velocity of a cluster
〈

β‖

〉
(top) and the ratio

of the clusters’ root mean square deviations of the transverse and longitudinal velocity rms(β⊥)/rms
(

β‖

)
(bottom) plotted as a

function of the charge of the clusterZ, different symbols show different bins inZbound [79].

FIGURE 20. Left: The natural logarith of the threefold, fourfold and fivefold probabilities normalized to the twofold probability
(symbols) as a function ofE∗−1/2, lines are best fits to the data [81]. Middle: (a) The reciprocal of the binary decay probability 1/P2

or (b) the ratiot/t2 as a function of the square root of the transverse energyE−1/2
t , solid lines are fits to the data in the upper panel

only [90]. Right: The experimental (symbols) and the calculated (solid) probability to emitn intermediate mass clusters (IMCs) as
a fucntion of the transverse energyEt . Forn= 0−8, Pm

n (P(n) in the figure) is calculated assuming a binomial distribution with the
values ofP2 from the linear fits shown in the plots immediately to the left and the corresponding values ofm from Eq. (76) [90].

being accomplished prior to the decay of the primary spectator [79]. The universal scaling behavior shown in Fig. 19
supports the idea of equilibrium that Wiesskopf (following Bohr) had in mind in his neutron evaporation work [3].

An analysis of the clusters withZ > 5 produced in the reactions 60 AMeV Au+Al, V and Cu showed that the
natural logarithm of the branching ratios for binary, ternary, quaternary and quinary decay depended linearly on
E∗−1/2 strongly suggesting the clusters were produced statistically [81]. These results were the natural extension
of the analysis of Weisskopf [3]. This can be seen by assuming thatB2, B3, B4, . . ., Bn are the average “barriers”
associated with binary, ternary, quaternary and quinary decays (i.e. a reaction at a given value ofE∗ results in one,
two, three, or four clusters and the residual nucleus). The decay probabilityPn for each channel is proportional to the
level density of the systemρ (E∗) as

Pn (E∗) ∝ ρ (E∗−Bn) (69)



Using a Fermi gas level density with a constant level density parametera and in the limit thatE∗� Bn gives

Pn (E∗) ∝ exp

(
−Bn

T

)
. (70)

Figure 20 shows that the ratio ofn-fold events to binary events

ln

(
Pn

P2

)
∝−

√
a

E∗
(Bn−B2) . (71)

is linear in E∗−1/2 which is proportional toT. The linearity of ln(Pn/P2) as a function of some measure of the
temperature is called thermal scaling and is an indication that these clusters were created thermally.

A related analysis of cluster multiplicity distributions for the reactions 80 and 110 AMeV Ar+Au reactions exhibited
binomial behavior at all excitation energies [90]. That is, a single binary event probabilityP2 could be extracted with
a thermal dependence indicating that cluster production is reducible to a combination of nearly independent emission
processes. Once again this arises naturally from Weisskopf’s work on nuclear evaporation [3]. The partial decay width
for a given binary channel is approximately

Γ2 ' h̄ω2exp

(
−B2

T

)
(72)

whereω2 is a frequency characteristic of the binary decay channel. In fission,ω2 is the collective frequency of assault
on the barrier andB is the fission barrier. The binary decay probability is related to the partial decay width

P2 '
Γ2

h̄ω2
. (73)

The channel period ist2 = 1/ω2 and the corresponding decay time is

t ' t2exp

(
B2

T

)
. (74)

For nuclei with smallE∗ (e.g. compound nuclei) the total decay width is the sum of the widths over all channels. For
nuclei with largerE∗ only the decay width of the binary channel need be considered, while the abundant light particle
decay can be treated as a background that may modifyT andB2.

If we assume that the excited nucleus has the opportunity to trym times to emit a cluster with constantP2 probability
of success, then the probabilityPm

n of emitting exactlyn decay products (n−1 clusters and the residual nucleus) is
given by the binomial distribution

Pm
n =

m!
n! (m−n)!

(P2)
2 (1−P2)

m−n . (75)

The average multiplicity and variance are then

〈n〉= mP2 andσ
2
n = 〈n〉(1−P2) (76)

thus one can extract the values ofP2 andm directly from experimental measurements of the mean multiplicity and its
variance at any excitation energy. This is shown in Fig. 20 for data from the reaction of36Ar+197Au. One can also
extractP2 “differentially” from the ratios of Pm

n
Pm

n+1
from

1
P2

=
t
t2

=
Pm

n

Pm
n+1

m−n
n+1

+1. (77)

These results are also shown in Fig. 20 for data from the reaction of36Ar+197Au. Both the method of measuring the
mean multiplicity and variance and the differential method show a linear relation to the square root of the transverse
energyEt . Et is defined as∑ei sin2

θi , whereei is the kinetic energy of theith particle detected in an event and and
θi is the angle between the particle and beam direction [90] and is proportional to the excitation energyE∗ which is



FIGURE 21. Left: Top: Arrhenius plots of the cluster charge yield of various reactions (see legend) distributions as a function of

the square root of the inverse of the transverse energyEt , solid lines show a fit toY(Z,Et) = B0exp
(
−BZ/E1/2

t

)
. Bottom: The

behavior of the extracted barrierBZ as a function of the chargeZ of the cluster [129]. Middle: Top, left: Arrhenius plots of the
cluster yield distributions from bond percolation on a simple cubic lattice as a function of the bond breaking probabilityq, solid
lines show a fit toY(A,q) = B0exp(−BA/q). Bottom, left: The behavior of the extracted barrierBA as a function of the cluster
number, solid lines show a fit toBA = a′sA

σ , botha′s andσ were in agreement with the expected values ford = 3 percolation. Top,
right: Arrhenius plots of the cluster yield distributions from the reaction 1 AGeV Au+C as a function of the square root of the

inverse of the excitation energyE∗, solid lines show a fit toY(A,E∗) = B0exp
(
−BA/E∗1/2

)
. Bottom, right: The behavior of the

extracted barrierBA as a function of the cluster number, solid lines show a fit toBA = a′sA
σ , the value ofσ was in agreement with

the expected values ford = 3 Ising value and the value ofa′s was roughly half of the expected value for nuclear matter [153]. Right:
Top: Arrhenius plots of the cluster yield distributions from a simple cubic Ising lattice as a function of the temperatureT, solid
lines show a fit toY(A,T) = B0exp(−BA/T). Right, bottom: The behavior of the extracted barrierBA as a function of the cluster
number, solid lines show a fit toBA = a′sA

σ , botha′s andσ were in agreement with the expected values ford = 3 Ising systems
(also shown is the power law innA(Tc) at the critical point) [190].

proportional toT2, thusT ∝
√

Et . The thermal scaling of ln(1/P2) (or ln(t/t2)) is an indication that these clusters
were created thermally.

Figure 20 also shows a comparison between the experimental excitation functions and those calculated using the
vales ofP2 from the linear fits in Fig. 20 and the associated values ofm from Eq. (76). The quantitative agreement
between calculations and the experimental data confirm the binomality of the process which created these clusters
and demonstrates that the probability of producingn−1 clusters,Pn is reducible to the probability of producing one
cluster,P2. This type of reducibility is a strong indication that the clusters were created independently of each other.

The above signatures have come to be called reducibility (the probability of the production ofn clusters is reducible
to the probability of producing a single cluster) and thermal scaling (the natural logarithm of the cluster yields is
proportional to an inverse of some measure of the temperature). The presence of these signatures has been amply
verified in nuclear reactions [81, 90, 95, 100, 109, 121, 129, 143, 148, 149, 153, 158, 166] and has been shown to be
present in percolation [153], Ising [155, 172, 190] and classical molecular dynamics models [206] as well as inherent
in Fisher’s theory [153, 190].



TABLE 2. Values for the critical exponents. The exponent values given by the ratio of integer numbers are known exactly.
The exponent vales not followed by citations are determined via the scaling relations given above. The exponent values for
nuclear matter are the average for results from experiments which measured exclusive cluster yields [85, 108, 123, 138, 153,
169, 170, 175, 184, 185, 181, 204].

β γ σ τ

d = 2 Ising 1
8 [5] 7

4 [5] 8
15

31
15

d = 3 Ising 0.3265±0.0001 [176] 1.237±0.002 [176] 0.6395±0.0008 2.209±0.006

Nuclear matter 0.324±0.008 1.25±0.07 0.63±0.02 2.18±0.02

d = 2 percolation 5
36 [42, 43, 46] 43

18 [42, 43, 46] 36
91

187
91

d = 3 percolation 0.418±0.002 1.793±0.003 0.4522±0.0008 [136] 2.18906±0.00006 [136]

mean field 1
2 1 2

3
7
3

Fisher’s theory shows thermal scaling quite clearly. Begining from the cluster number concentration as given in
Eq. (16) and working at coexistence (∆µ = 0) we can immediately write

nA(T) = g′0A−τ exp

(
a′sA

σ

Tc

)
exp

(
−a′sA

σ

T

)
= B0exp

(
−BA

T

)
(78)

whereB0 contains all the temperature independent terms andBA is the barrier associated with the production of
a cluster ofA constituents. Equation (78) shows that the barrier should increase with increasing cluster number:
BA = a′sA

σ . This behavior was observed in a wide variety of heavy ion collisions over a broad range of energies when

the natural logarithm of the yield of clusters of a given charge were fit toY(Z,Et) = B0exp
(
−BZ/E1/2

t

)
whereEt is

the transverse energy [129]. The left column of Fig. 21 shows the fits toY(Z,Et) and the behavior of the extracted
barrierBZ as a function of the charge of the cluster in question. The middle column of Fig. 21 also shows the barriers
BA determined from the cluster yields as a function of bond breaking probabilityq for bond percolation on the simple
cubic lattice (Y(A,q) = B0exp(−BA/q)) and from the cluster yields as a function of the square root of the excitation

energyE∗ (Y(A,E∗) = B0exp
(
−BA/E∗1/2

)
) for the reaction 1 AGeV Au+C. For both percolation and the nuclear

reaction the barrierBA was observed to vary asa′sA
σ with a′s andσ equal to their percolation values for the percolation

clusters andσ equal to itsd = 3 Ising value for the nuclear clusters anda′s roughly half its expected value for nuclear
matter [153]. The right column of Fig. 21 shows the barriersBA determined from the cluster yields from a simple
cubic Ising lattice as a function of temperature (Y(A,T) = B0exp(−BA/T)) [190]. Again the value of the barrier
BA went asa′sA

σ with botha′s andσ close to their expected values. In all cases clusters of a wide range in size (as
measured byZ or A) and over a wide range in “temperature” (as measured byEt , E∗, q or T) showed thermal scaling.

Reducibility: Poissonian for the case of infinite systems

Pn =
〈n〉
n!

e−〈n〉. (79)

and binomial for the case of finite systems (see Eq. (75)), is inherent in not only Fisher’s theory, but any physical cluster
theory which assumes that a non-ideal vapor can be approximated by an ideal vapor of clusters with the formation of
clusters exhausting the non-idealities. Thus, the stochasticity implied by reducibility is present in physical cluster
models where all clusters are completely independent of each other. Figure 22 shows the reducibility feature observed
in the cluster distributions arising from a variety of nuclear reactions [81, 90, 95, 100, 109, 121, 129, 143, 148, 149,
153, 158, 166] as well as from percolation calculations [153], Ising calculations [155, 172, 190] and classical molecular
dynamics calculations [206].

Using reverse kinematics, the clusters produced in the reaction of 1 AGeV Au+C were studied [85]. The moments of
cluster charge distributionsMk (m) were analyzed in a similar fashion to the percolation cluster distributions discussed
above (the total charged particle multiplicitym was used as the “control parameter” in lieu of the more standard bond
probabilityq, temperatureT or excitation energyE∗) [58, 66, 70, 71, 84, 117]. In this case the location of the critical
point is given bymc, the total charged particle multiplicity of clusters produced when the system reaches the critical
point. Similarly, the distance from the critical point is given byε = mc−m. Fisher’s theory (specifically the steps that



FIGURE 22. Top, left: the excitation functionsPn for carbon (left column) and neon (right column) emission from reactions
36Ar+197Au at 100 AMeV (top panels) and129Xe+51Vi, natCu,89Y, 197Au (bottom panels; the lines are Poissonian fits to the gold
target data [129]. Bottom, left: the multiplicity distributionsPN for clusters of sizeA as a fucntion ofN in bins of bond breaking
probability pbreak and excitation energyE∗ for percolation (left) and the reaction 1 AGeV Au+C (right); lines are Poissonian
distributions calculated with the measure〈NA〉 [153]. Top, right: the probability distributions of obtainingm clusters of sizeA
at the three temperatures indicated; lines are fits to a Poissonian distribution (Eq. (79) with the means given by the data [190].
Bottom, right: the probability distributions (histograms) and binomial fit (Eq. (75) dotted line) for the production of NTSF number
of clusters at increasing energies from low (upper left) to highest (lower right) for classical molecular dynamics calculations [206].

yields equations (42) and (44)) leads to
M2 ∝ |ε|−γ andZmax ∝ ε

β . (80)

With techniques developed and tested on percolation lattices [84, 117] the location of the critical point in terms ofmc
and the values of the critical exponents were measured from the exclusive cluster yields. Figure 23 shows the results
of that analysis and Table 2 shows the critical exponent values from several different reactions. The similarity between
the exponent values extracted from nuclear reactions and the values of thed = 3 Ising universality class is striking.

A variety of critiques of this analysis were discussed [96, 97, 98, 113] concerning the effects of mixing events of
different temperatures by binning in multiplicity and the effects of including clusters produced in the collision in the
analysis of clusters yields assumed to arise from an equilibrated source. Many of these criticisms were addressed
in another analysis of this reaction with higher statistics which excluded clusters arising from the collision from



FIGURE 23. Left: An example of the determination of the critical exponentγ for particular vapor and liquid fitting regions; the
natural logarithm of the second moment of the cluster distribution plotted as a function of the natural logarithm of the distance from
the critical point as measured by the total cluster multiplicity. Middle: An example of the determination of the critical exponentβ

for a particular liquid fitting region; the natural logarithm of the charge of the largest cluster plotted as a function of the natural
logarithm of the distance from the critical point as measured by the total cluster multiplicity. Right: The exponentγ versus the
exponentβ values determined from clusters produced in the reaction 1 AGeV Au+C and ford = 3 percolation,d = 3 Ising and
mean field[85], see plot for legend.

consideration and studied the effects of binning percolation calculations in terms of cluster multiplicity [156]. In
that work it was seem that the clusters produced in the initial collision had little effect on the extracted exponent
values and that accurate critical exponents could be determined from lattices with as few as 216 sites when using
cluster multiplicity as the control parameter. That work also stated the physical picture of cluster production from an
equilibrated system [156]:

Immediately following the collision, the gold projectile remnant is in an excited state with fewer than 197
nucleons. The excited remnant cools and expands and may evolve to the neighborhood of the critical point
in the temperature-density plane, where clusters condense from a high temperature low density vapor of
nucleons.

This physical picture and the analysis above raises several questions (beyond the fundamental question about how the
system comes to equilibrium which has long been assumed to be the case [3, 4]). For instance, the simple power
laws in Eq. (80) are valid so long as the chemical potential of the liquid is equal to the chemical potential of the
vapor, i.e. the system is at coexistence:∆µ = 0. Is there any evidence that the system is at coexistence? Where in
pressure-temperature-density space is the system when the cluster’s condence [124]? What is the meaning of density
or pressure of a vapor which is not enclosed by any container? What are the effects of the nuclear nature of the
system? Not only is there a cost in surface energy associated with the formation of a nuclear cluster (as shown in
Fisher’s theory), there is a cost in Coulomb energy, a cost in asymmetry energy, pair energy and so on. Whatever
the answer to these questions, other types of analyses and various experiments measured similar exponent values
[138, 169, 170, 175, 184, 185, 181, 204].

Another computational model that was used to study the phenomena of nuclear cluster formation was based on
classical molecular dynamics attempted to study many of the questions above [60, 65, 68, 74, 86, 87, 93, 91, 103, 105,
112, 116, 118, 130, 135, 144, 168, 172, 174, 177, 178, 206].

Some calculations [60, 65, 68, 91, 105, 116, 118, 130, 135, 168, 172, 174, 177, 178, 206] were done either with a
Lennard-Jones potential [2, 16, 21, 22] (modified or otherwise)

V (r) = 4E

[( r0

r

)12
−

( r0

r

)6
]

(81)

wherer is the distance between two particles andE is the maximum depth of the potential well atr = 21/6r0; for r < r0
V (r)→+∞ (r0 is the radius of the infinitely hard core) and forr � r0 V (r)→ 0− (the long range attraction). Other



FIGURE 24. From left to right: an example of the Yukawa potential [74], an example of a Lennard-Jones type potential [174]
and an example of a Lennard-Jones type potential with isospon [168]. All potentials share the short range repulsion (hard core) and
longer range attraction.

FIGURE 25. Left: density profiles of the dynamical evolution in coordinate space as a function of time and impact parameter for
two colliding liquid drops [112]. Middle the time evolution of an Ar300 cluster for various initial temperaturesTin: Tin = 2.0 shows
a typical evaporation process;Tin = 4 shows the production of clusters of all sizes; andTin = 7.0 shows a rapid expansion which
may lead to instabilities and the formation of vapor clusters [118]. Right: the trajectory of the system in temperature-density space:
from top to bottom the evolution of Ar100, Ar300 and Ar500; solid curves indicate coexistence (CE), the isothermal spinodal (ITS)
and the adiabatic spinodal (AS) for an infinite system. For all systems the temperature decreases with increasing time. The density
shown for the trajectories is the central density of the largest cluster [118].

calculations [74, 86, 87, 93, 103, 112, 144] were done using the Yukawa potential [10] (modified or otherwise)

Vnn(r < rcutoff) = V0

(
e−µ0r

r
− e−µ0rcutoff

rcutoff

)
Vnp(r < rcutoff) = Vr

(
e−µr r

r
− e−µr rcutoff

rcutoff

)
−Va

(
e−µar

r
− e−µarcutoff

rcutoff

)
Vnn(r > rcutoff) = Vnp(r > rcutoff) = 0 (82)

whereV0, Vr andVr set the scale of the potentials andµ0, µr andµr give the range of the force. Figure 24 shows
examples of the potentials used in various calculations. In general these efforts examined the clusters that were
produced from systems with a few hundred particles enclosed in a container with periodic boundary conditions and/or
a volume that was much larger than the volume taken up by the particles. Some calculations were performed by
starting from an equilibrated drop of a few hundred constituents at a given temperature [60, 65, 87, 91, 93, 103, 105,
116, 118, 116, 135, 144, 168, 172, 177, 178, 206] while others started from two drops both near zero temperature, but
which are excited through collisions [68, 74, 86, 112, 174].



FIGURE 26. Left: The solid line shows the (binding) energy per particle of drops from a classical molecular dynamics calculation
at low temperatures; the dash-dot line shows a fit with to the equation (and fit parameters) shown in the figure; and the dashed line
shows the least bound particle in the drop [174]. Middle: cluster mass distributions for classical molecular dynamics calculations
of 100 particles; dots show the results of the calculations and solid lines show a fit to Eq. (66) [93]. Right: top: results from the
primary cluster distributions for the (a) cluster mass yield at an input temperature which gives the best fit to a power law (the
line shows the fit of a power law with the resultτ = 2.18±0.03), (b) location of the peak inA-sized cluster production (the line
shows the fit of a power law with the resultσ = 0.51±0.15), (c) size of the largest cluster (the line shows the fit of a power law
with the resultβ = 0.29±0.08)and (d) peaking behavior of the second moment of the cluster distribution (the line shows the fit
of a power law with the resultγ = 0.77±0.25); bottom: the same as the top but for the asymptotic time cluster distribution (here
τ = 2.18±0.03,σ = 0.64±0.18,β = 0.28±0.13 andγ = 0.72±0.33). Both the primary and asymptotic cluster yields give the
same critical exponent values which are (expect forγ) similar to thed = 3 Ising values shown in Table 2 [178].

In general it was found the classical molecular dymanics calculations could reproduce, in quality, several features
associated with experimentally measured clusters such as: the liquid-drop behavior of the binding energy [65, 174];
cluster yields (e.g. those shown in figures 13 and 14) which were also well described by Fisher’s theory and Eq. (16)
[68, 86, 87, 91, 93, 103, 105, 112, 116, 118, 135, 144, 177, 178, 206]; the Campi plots (shown in Fig. 18) [93, 112,
118, 168]; peaks in the moments of the cluster distributions and the associated critical exponents [178]; reducibility
[172, 206]; and thermal scaling and the associated barrier dependence on cluster size [172]. Figure 26 shows some of
these results.

While the features of the cluster distributions exhibited thermal and seemingly critical features, estimates of the
trajectories (temperature and density as functions of timeT (t) andρ (t)) of the systems studied rarely passed close to
the liquid-vapor critical point [91]. For example, see the trajectories shown in Fig. 25 which shows that none of the
trajectories considered pass near the liquid vapor critical point (while all trajectories pass near the adiabatic critical
point) yet forTin ' 4 critical behavior is reported [118].

One possible solution to this paradox is that the critical point of a system depends on the size of the system
[23, 35, 36, 76, 89, 94]

Tc (∞)−Tc (L) ∝ L−1/ν and ρc (∞)−ρc (L) ∝ L−(d−1/ν). (83)

However, the size referred to in the scaling equations above,L, is the size of the volume in which the fluid is enclosed
[94] and not the number of particles inside the volume. Thus, one may not see any such finite size scaling of the critical
point if even just a few hundred particles are enclosed in a sufficiently large volume, or they enclosed in a volume with
periodic boundary conditions (which lessens the effects of finite size [23, 35, 36]) or if they are not enclosed in any
volume at all.

Another possibility is that the temperatures and densities used to construct trajectories as shown in Fig. 25 are not
the pertinent quantities. Generally, the temperatures and densities used to construct such trajectories are associated
with the central region of the largest cluster [60, 65, 68, 74, 86, 87, 91, 93, 118]. For instance, at low temperatures
cluster production should be predominantly a surface phenomena, thus the temperature and density at the core of the
evaporating cluster are less important than the conditions at or near the surface. In any case, it is clear that the clusters



produced in classical molecular dynamical calculations appear thermal in nature, however it is still an open question
how the dynamics leads to this result.
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