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Abstract. This chapter gives a historical review of the scaling of particles yields emitted from excited nuclei. The focus will

be on what scaling is, what can be learned from scaling, the underlying theory of why one might expect particle yields to
scale, how experimental particle yields have been observed to scale, model systems where particle (cluster) yields do scale
and finally scaling observed in the particle yields of various low and medium energy nuclear reaction experiments. The chapter
begins with a basic introduction to scaling in the study of critical phenomena and then reviews Fisher’s theory which has all
the aspects of scaling and can be directly applied to the counting of clusters, the most reliable measurement accessible to the
experimental study of nuclear reaction. Also this chapter gives a history of the various scalings observed in nuclear reaction
experiments and culminates with an estimate of the nuclear liquid-vapor phase boundary based upon measured patrticle yields.
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INTRODUCTION

This chapter performs the modest task of covering eight decades worth of research on scaling in condensed matter and
nuclear physics [1, 2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 140, 139,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186,
187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207]. Inevitably,
such an attempt will be incomplete and every reader will have his or her own favorite reference(s) omitted. To that end
we humbly submit this chapter as a starting point for the motivated reader from which they can, perhaps, further their
own understanding and research.

Scaling has been called “one of the three pillars of modern critical phenomena” [134]. The scaling hypothesis
used in the study of critical phenomena was independently developed by several scientists, including Widom, Domb,
Hunter, Kadanoff, Fisher, Patashinskii and Pokrovskii (see reference [18] for an authoritative review). Much of scaling
is contained in the renormalization group work of Wilson [33].

The scaling hypothesis has two categories of predictions, both of which have been verified experimentally for a
variety of physical systems. The first category is a set of relations cadlglihg laws These scaling laws relate the
critical exponentsx, 8 andy which describe, for instance, the behavior of the the specific at{~*), density
differences of the phasep, (- py ~ ) and isothermal compressibilitycf ~ £~7) for fluid systems; specific heat
(C ~ %), magnetizationl ~ €#) and isothermal susceptibilityct ~ £~7) for magnetic systems or the singular
part of the zeroth, first and second moment of the cluster distribution percolating systems near a critical point
(e = (Tc —T) /T, for physical systems an(p. — p)/pc for percolating systems). In all the systems mentioned here,
and more, these exponents are related via the scaling law

a+2B+y=2. 1)

The second category data collapsewhich is easily demonstrated with the Ising model. We may write the equation
of state as a functional relationship of the fokin= M(H, £) whereH is the applied magnetic field. Sinb&H, ¢) is
a function of two variables, it can be graphically representdd as ¢ for differentH values. The scaling hypothesis
predicts that all of thes®l vs € curves can be “collapsed” onto a single curve provided that one plotd wste but
rather a scale (M divided byH) to some power as a function of a scake(t divided byH to some other power).
The predictions of the scaling hypothesis are supported by a wide range of experimental work with physical systems
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FIGURE 1. Examples of data collapse for various fluids and a magnetic system. Top left: the tempEwdituded by the critical
temperaturd plotted as a function of the vapor densgtyand liquid densityp; normalized to the critical densify. [6]. Bottom
left: the cube of the normalized liquid vapor density differeRce (p; — pv)/pc = Ap/pc plotted as a function of the normalized
temperaturd /T, for “quantum” fluids (a: Hé, b: He* and c: H) and classical fluids (d), all fluids show scaling of the first category:
p1 — pv ~ €P [13]. Center: the scaled chemical potentis| / \8\35 plotted as a function of the scaled density differejigs| / \e|ﬁ

in the critical region of several fluids (GOXe, Sk, Ar, N,O and CCIF) [15]. Top right: scaled experimentIHT data on five

different magnetic material: CrBrEuO, Ni, YIG and PgFe [134]. Bottom right: the scaled susceptibility plotted as a function of
the scaled temperature for tHe= 3 Ising model [186].

as well as computational models [6, 13, 15, 18, 35, 36, 37, 39, 41, 45, 47, 54, 67, 76, 101, 117, 134, 153, 154, 156,
159, 173, 179, 185, 186, 190, 201, 203]. Figure 1 shows some selected examples of data collapse.

The success of scaling in condensed matter is unquestionably impressive, but how is this sort of scaling related
to the main topic of this chapter: the scaling of light fragment yields from nuclear multifragmentation experiments
(where direct, straightforward measurements of standard thermodynamic quantities like density, pressure, chemical
potential and so on are impossible)? To see how the two are related we present a derivation of Fisher’s theory in the
next section.

An aside: in the following text the more general term “cluster” will be used instead of “fragment” or “droplet.”
This is done to underscore the similarity between nuclear fragments and clusters (properly defined [24, 28, 44, 182])
in systems like the Ising model and droplets of fluid (classical or quantum). We also do this to avoid the unfortunate
labeling of the process of nuclear cluster production as “fragmentation” which has a specific meaning in condensed
matter physics [73] that may be quite different than what the nuclear multifragmentation community has in mind.

FISHER’S THEORY AND SCALING

Physical cluster theories

Fisher’s theory is an example of an equation of state that scales [17, 18, 156, 182] and is one of many physical cluster
theories. Physical cluster theories of non-ideal fluids assume that the strength of the monomer-monomer interaction
is exhausted by the formation of clusters, and that the clusters behave ideally (i.e. they are independent of each
other). Clusters of a given number of constitueAtsan be characterized by their masg, a chemical potential



(per constituenty and a partition functioma(T,V) that depends on the temperatdreand volumeV of the fluid.
Because of the ideality of the fluid of clusters, the pressure and density are straightforward to determine the pressure
p as

T ©
P=y 2 WTVIZ @
and the density as
1 [oe]
==Y Aga(T, V)2
P=y A; (T.V) @)
wherezis the fugacityz= /7. The concentration oA clusters is then
TV)A
NA(T,2) = M~ (4)

Fisher’'s theory

Fisher’s contribution to physical cluster theory was to write the partition function of a cluster in terms of the free
energy of the cluster. The energetic contribution to the free energy (very recognizable to nuclear scientists) is based on
the liquid drop expansion

Ea=E/+Es (5)

whereEy is the volume (or bulk) binding energy of the cluster which is taken to be
Ev=a/V ~aA (6)

hereV is the volume of the clustes, is the volume energy coefficient in termsWfanda, is the volume energy
coefficient in terms ofA. The termEs is the energy loss due to the surfagg(where surface is taken as the- 1
measure of a cluster that existsdrEuclidean dimensions) of the cluster. For clusterd-iimensions this is usually
taken to be o1

Es=as~aAd @)

heres is the surface of the clusteas is the surface energy coefficient in termssénd &, is the surface energy

coefficient in terms oA"a . Becauses; is a measure of the volume energy loss due to the finiteness of the cluster,
i.e. that the cluster has a surface, the surface energy coefficient is nearly equal to and opposite in sight to the volume
energy coefficienta ~ —&,. Fisher left the surface energy factor more general, wriing: ajA° whereo is some
general exponent describing the ratio of the surface to the volume of the cluster.
Fisher estimated the entropic contribution to the free energy of the cluster based on a measure of the combinatorics
of the number of clusters with surfase
Gs = gos ¥e>s® (®)

wheregp is some overall normalizatiolbg can be thought of as the limiting entropy per unit surface of a cluster. This
estimate can be tested by the study (and direct counting) of the number of self-avoiding polygons on the square lattice
[140, 180, 192]. An example of a self-avoiding polygons on the square lattice is shown in Fig. 2. The study of self-

avoiding polygons shows that to leading order- 0.562301495 3 %975 [140] while a fit to the direct counting of
self-avoiding polygons (shown in Fig. 2) givesas>5%e%975 [180, 193]. Fisher then assumed that for large clusters,
over some small temperature range the most probable or mean surface of a cluster would go as

S~ agA° )

so thatgs could be re-written as
Oa ~ GhA TePA” (10)

wheregy = goay*, T = xo andb = bsag. Which gives the entropy of a cluster as:

Sa=Inga =Ingy— TINA+DA°. (11)
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FIGURE 2. Left: an example of a self-avoiding polygon on the square lattice vith23 ands = 40, there are 4457,726 494
ways to form a cluster with this number and surface. Right: a fit using Eq. (8) (solid line) to the direct courgtir{gén circles).

The partition function of a cluster is then

d
_ 27maT \ 2 Ea—TS

) V%A_Texp{ & £Tin (J&)}A}em{W} w2

T

Equation (4) then gives the cluster concentration as

T - g,OATeXp{ [av—ziT'”(zJ‘anTﬂA}exp[_<ag—ws>Ac}ZA

T T

ptay—STIn(E_)]A - o
g/OAf’L' exp |: 2A - (ZEmAT):| exp |:_(aS-_II—_US)A:| ) (13)

Fisher identified the numerator of the first exponential as the distance from phase coexistence as measured by the
chemical potential

d h?
where at coexistence (or condensatidn) = 0 and lcoex = %T In (%) — ay. The “microscopic” part of the

surface tensioffa; — T k) vanishes at the critical point, leaving only a power law (which has been explicitly verified
in computational systems [30, 41, 71, 67, 72, 84, 86, 87,91, 93, 103, 111, 115, 116, 117, 118, 132, 135, 137, 144, 153,
156, 185, 190, 193, 201] and implicitly verified in a wide variety of physical fluids [25, 29]). Thus

Te= (15)

S|

Using Eg. (14) and assuming little or no temperature dependeraieaofib} over the temperature range in question,
then we may re-write Eq. (13) as

) - o 42 ) =

T T

which gives the familiar expression for the cluster number concentration.
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FIGURE 3. The scaling of cluster concentratiomgT) from d = 3 Ising calculations on the simple cubic lattce [203]. Top (from

left to right): The cluster concentration &t= 0.997T. in terms of cluster surface(the solid line shows the cluster concentration

at the critical point which is empirically estimated to gorgéT;) = 3.8552569): the scaling ofs(T) according to Fisher's theory

with a surface free energy which varies linearlyirand the scaling afis(T) according to Fisher’s theory with a surface free energy
which varies ag2”. Bottom (from left to right): The cluster concentrationiTat= 0.997T. in terms of cluster numbex (the solid

line shows the cluster concentration at the critical point which goag(@s) = 0.093%~2209[190]); the scaling ofiz(T) according

to Fisher’s theory with a surface free energy which varies linearly, and the scaling ofia(T) according to Fisher’s theory with

a surface free energy which variesef¥ (the solid line shows the value of the surface free energy coeffielent12.63+ 0.04

[203]). Colors give the surface or number of the cluster as can be seen in the left most plots. No fitting has been done in any of the
plots of this figure.

Caveats

Before proceeding further, we must study the implications and assumptions inherent in Fisher’'s theory. The first
implication is that a cluster’s surface free energy is lineag.irrhis implication appears in Fisher's work only when
studying the analytical character and the critical point [17] and does not appear explicitly in the cluster concentrations
until other work with Fisher's theory [30, 34, 38, 41]. In terms of the surface area of a cluster, the concentration is the
product of the combinatorial factor and a Boltzmann factor that depends on the surface energy:

ass
ns(T) O gsexp(—7> . (17)
Following the arguments put forward in the preceding section and using Eq. (8) gives
xgxp(— 2ES
ns(T)Os exp( T ) , (18)

suggesting that the surface tension of a clustegds
However, it has long been known empirically [1] that the surface tension of macroscopidTl(tiis surface free
energy per unit area) is not linearén In fact, to lowest order, a6 — T [14, 18, 19]

[ =gV (19)

wherev is the critical exponent that also describes the divergence of the correlation length near the critical point and
is related to other exponents through the hyper-scaling relation [14, 18]

dv:y+2ﬁ:2—a—%l. (20)
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FIGURE 4. Left: the scaling of cluster concentrationg(T) from d = 3 Ising calculations on the simple cubic lattce [203]
according to Eq. (24). Over 700 points are collapsed to a single curve with the fit parameter516-0.004,g; = 4.3+0.2,
x=2.58+0.01,as = 4.04+0.09,a9 = —2.11+0.04,a; = 1.73+0.06 andds = —1.7+0.1. Colors give the surface of the

cluster as in Fig. 3. Right: a comparison of the behavior of the surface tension from the fit to the left (open circles) and the surface
tension determined in reference [120] (open squares), while the parameters are different, the overall behavior is similar over the
temperatures considered5X T < 4.5.

Studies of thel = 3 Ising model indicate that the surface tension is sensitive to higher order terms (H.O.T.s)
I =age? (1+ aged + als) (21)

with ag = 1.55+0.05,a9 = —0.41+0.05,0 = 0.51 anda; = 1.2+ 0.1 [120].

It has also long been known that the surface tension of a cligt&rT) may differ from surface tension of a
macroscopic fluid [7, 202]

rAT)=r <1— 25r> (22)
ra

whered; is the Tolman length independent of cluster sizesrarid the radius of the cluster. However, this affects only
the magnitude of the surface tension, whereas the temperature dependence of the surface tension remains the same for
clusters and the macroscopic fluid.

Figure 3 shows that the concentrations of clusters as a function of their sugfdcein d = 3 Ising calcutaions
[203] are poorly described by Eq. (18) and better described by

as82vs
T )

ns(T) Os™ exp(— (23)
with v = 0.6299+ 0.0002 set to itsl = 3 Ising value and; = 4.51152+ 0.00004 set to its value for the simple cubic
lattice [176], the exponent is determined empirically from a power law fit to the cluster concentratiofis=afT.
The same is not true when scaling in terms of cluster nurAb&ig. (13), with a surface free energy linearigives
a better description than usimg".
As an aside we note that the data collapse shown in Fig. 3 can be improved by taking into account the higher order
terms in Eq. (21) and the cluster size effects in Eq. (22) the cluster concentration of Eq. (23) to give

sae?’ (1+age? +age) (1— 28

(24)

Figure 4 shows the results for the scaled cluster concentrations and the surface tension.
To understand whya(T) surface free energy is better described by a surface free energy lineaverlook in
more detail at the change in describing the cluster concentrations in terms of cluster Aurather than the cluster’'s
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FIGURE 5. The surface tensioh in terms of cluster surfaceand the surface tensid‘r}/plz/3 in terms of cluster numbek as a
function ofe = (Tc — T) T¢ for: “quantum” fluids (hydrogen and helium), noble gases (krypton and xenon) and poly-atomic fluids

(methane and water). The blue circles show data points [205] and the red lines show fitd tge2 andr/plz/3 = F’Osz".

surfaces. Working ind = 3 for the sake of illustration and assuming that the clusters are spherical (which will be
tested below) we have the cluster’s surface as:

s=4nur3 (25)
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FIGURE 6. Left: the direct counting ofis (open circles) ands a (symbols). Middle: the most probable surface as a function of
A andT. Right: top: the effective surface to volume exponerds a function of temperature; bottom: the fractal dimengipras
a function of temperature, see references [67, 193] for details.

wherer a is the radius of the cluster in question. The cluster’s volume is

V= gmf\. (26)

Using the density of the cluster= A/V shows that

3 \2/3 23
=4r | — AL, 27
=4 () e
If we treat each cluster in the vapor as a small drop of liquid, then the pertinent density is the density of thg liquid
and 5\ 23
s=4rx (> A3, (28)
Arpy
Now then the surface free energy is
3 \23
Fs=Toe?s=Toe?v4n (> A3, (29)
4rmp)

To see the effect of the change from cluster surface to cluster number we look at the surface tension for a selection of
real fluids shown in Fig. 5. For a broad range of fluidg as 0 Eq. (19) describes the behavior of the surface tension.

However, for the ratio of /plz/ % is described by

r
P

The effective exponente of € of Fsin Eq. (29):

dInFs 2 dhe+dgBeP
= —=— = e — 1
Vet = Jine <Y 31+die+dgeh (31)
where the parameterization
1= Pe (1+ the + dﬁsﬁ) (32)

was used for the density of the liquid [6]. In the limit®f— O: vef — 2v but away frome = O: ve — 1 for systems

in thed = 3 Ising class andes — O for systems in thel = 2 Ising class. Thus, it is clear that the translation from
cluster surface to cluster number causes the surface free energy to vary, approximately, lineamainfrom the
critical point.



Next we can examine Fisher’s assumptions on the most probable or mean swufaceluster. We may do this by
using the combinatorics of self-avoiding polygons and noting that, at phase coexistence, Eq. (33) is the product of the
combinatorial factor and a Boltzmann factor that depends on the surface energy:

NsA(T) U gsa eXp(—iiS) (33)

where now we write things explicitly in terms of both cluster numBend cluster surface[191, 193]. The mean
surface of a cluster is then just

>A-15sA(T)
Sa-1nsa(T)

Using the direct counting ajs o (see Fig. 6) and setting (as in the Ising modgh= 2 (thusT; ~ %97 = 2.06) we can
determine the most probable surface of a clustek cbnstituents at temperatufe Fitting S(A) with apA° letting ag
ando be free parameters we can study Fisher's assumption. Figure 6 shows that at low temperat@8&sas one
would expect for al = 2 system. As the temperature increases the valueintreases. AT = T, ~ 2.06, ¢ ~ 0.65,
a change of 30% from th€ = 0 value ofc. Thus, Fisher's implicit assumption thatis a constant is only accurate
to the 30% level in this example. Looking at the accpeted value €f8/15 from thed = 2 Ising model [201] and
comparing it to the expectel = 0 value ofc = 1/2 shows this assumption to be accurate to tf67% level for
0< T < T.. Looking at the accpeted value of= 0.639464 0.0008 from thed = 3 Ising model [190] and comparing
it to the expected = 0 value ofc = 2/3 shows this assumption to be good to th@s8s level for 0< T < T.. When
the temperature is restricted to a very small range ardurdT this assumption is quite good.

Another possible problem with this assumption is not only the dependercemtemperature, but the dependence
of ag on temperature and cluster sigeFisher implicitly assumed that féx — o ag is some constant. Using Eq. (34)
with thegs a of self-avoiding polygons we can test this assumption, by examining

5= (34)

—0= —c zvozlsnSA(T)
=A°s=A°&L—=">"
% > Sa-1Nsa(T) (35)

In this examples = 8/15 is taken from thel = 2 Ising model andl' = 1 ~ T./2. Figure 7 shows the results. For

A < 10 the value ofyg clearly shows “shell effects” that cause fluctuations on the order of 10% of the limiting value of
ap. For A > 10 the shell effects diminish and the limiting valueagf~ 4.6 is reached. Thus in this example Fisher's
assumption holds fok > 10 [191].

Figure 7 also shows the results from a direct countingd ef3 self-avoiding polyhedra [195] and clusters from the
d = 3 simple cubic Ising lattice [203]. Thg A for the self-avoiding polyhedra has been directly counted w09,
counting forA > 10 is prohibitively time consuming on today’s computers. However, the dependeagemntluster
size and temperature can be investigated just as in the case att2epolygons (usings = 0.63946+ 0.0008 and
as = 2, which holds for thel = 3 Ising model as well). We see that for the lowest temperaflire {, as compared to
thed = 3 Ising modelT, = 4.51152+ 0.00004 [176]) the shell effects are evident: for perfect cubesl andA=9
ap = 6 as expected. As the temperature increases the shell effects are washedapuslzowls a steady rise with.

The steady rise odig with A could indicate that > 0.639464 0.0008 (which violates the first category of scaling as
will be seen below) or that the limiting behavior Fisher assumed does not set ilhistB0. In either case, it seems
this assumption is poorer th= 2 than ind = 3.

Finally, we note that Fisher’s theory is valid only for< T;: temperatures greater thagyield cluster surface free
energies that are negative, and thus unphysical. The parametrization used in Fisher’s theory is only one example of a
more general form of the scaling assumptipn= A~*f(X) andX = A°e? and wheref (X) is some general scaling
function which [37, 41, 45, 54, 154]:

- is valid on both sides of the critical point;

. for smallX (T ~ T and smallA) ande > 0, f(X) will vary as exg—X) with o =1/(86) =1/(y+B) ~ 0.64
for three dimensional Ising systemg/1% for two dimensional Ising systems er0.45 for three dimensional
percolation systems and= 1,

. for large X (T far from T or largeA) and e > 0, f(X) will vary as exg—X) with 6 = (d —1)/d for all d
dimensional systems and with= 2v.

Figure 8 shows the general form of the scaling functigX) for percolation systems [37, 41, 45, 154]. However, this
more general scaling functioi(X) does not lend itself as easily to a physical interpretation as does the parameteriza-
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Middle: the natural log of the scaled cluster yields as a functiop:&f (solid points) for (a)d = 2 to (f) d = 7 together with the
least-squares fits (solid lines) [45]. Right: the scaled cluster yields plotted as a funckon ef° for |¢| < 4.5x 102 on a linear
(a) and semi-logarithmic (b) scale; solid lines represents fits to a scaling furf¢kgri154].

tion given by Fisher’s theory and it is this physical interpretation which is important to the application of this method
to the nuclear data.

With these caveats in mind we can proceed, cautiously, and see how both categories of scaling arise in Fisher's
theory.

Scaling from Fisher's theory

Starting with the second category of scaling first, namely: data collapse. We start by looking at the cluster concen-
trations in Fisher’s theory given by Eq. (16). Dividing both sides by the power law factor and the chemical potential

factor then gives:
Na(T) B aeA®
oy eXp( T ) (36)
T

QoA " exp(




This shows that scaling the cluster concentrations by the power law and chemical potential factors against the cluster
surface free energy should collapse the data for each clustef sizeach temperature to a single curve. Figure 9
shows this type of scaling and data collapse in percolation [191] and Ising model cluster yields [190]

To arrive at the first category of scaling from Fisher’s theory, we combine the general equations for pressure and
density for physical cluster theories, equations (2) and (3), with Fisher’s estimate of the cluster partition function,

Eq. (13) giving
) . 37)

ad _ ApA aLeA° l 1 AuA aleA°
o / T apn N _ / T [t o
p=T AZ1 OoA exp( = ) exp( = andp AZl goA  “exp T | exp =
3 B e AC ) B e A°
Pcoex= TA;QE)A TeXp( aST > andpcoex= A;QZ)Al TeXp< aST ) . (38)

Along the coexistence line, i.Au = 0, we have

At the critical point we have
pe=Tc S GA Tandpc = goA " (39)
Azl A;
Taking the ratios of equations (38) to (39) gives the reduced prepsssg pc and reduced densifyeoex/ Pc
[ — _ a’seA" © 1— . a‘/SEAO-
Pcoex _ Toa1A TeXp( T ) and Pcoex _ 2a-1A TeXp( T )
Pe Teya1A® Pc Teya AT

(40)

which has the advantage of being free of the congignin order to further test the results above, we determine the
magnetizatiorM of thed = 3 Ising model using Eg. (40) and recalling that the magnetization per lattice site is simply:

p
M oo (41)

Using the values o6, 7, cop and T, determined from fitting clusters on tlte= 3 Ising lattice shown in Fig. 9 [190]

in Eq. (40), Eq. (41) gives one branch of the magnetization curve, the branth fob. Since the magnetization is

symmetric about the origin, the points fbt < 0 are reflections of the points fdn > 0. The results are shown as

the open circles in the bottom right plot of Fig. 9. These results compare well with a parametrizatibfirfpf190]

(used as a “benchmark”) shown as a solid line in the bottom right plot of Fig. 9. Better agreement vii{iTthe

parameterization is found when the valuesof 0.63946+ 0.0008,7 = 2.209+ 0.006 (from the scaling relations in

Fisher’s theory developed below and valuegof 0.32653+ 0.00010 andy = 1.2373+ 0.002 [176]),a; = 12 and

Tc = 4.51152+ 0.00004 were used. Nearly perfect results were observed whess “tuned” to 16 and the more

precise value ofl; and the scaling relation exponent values were used. The agreement between the magnetization

values calculated via the sum in Eq. (41) and Mh€T) parameterization for & T < T, suggest that the ideal gas

assumptions in Fisher’s theory allow for an accurate description of the system even up to densities ag:high as

By combining equations (38) and (39) we can arrive at the scaling relations as follows:

-2

_ /o / (< / _ '\ L

Pc — Peoex _ o 3 AT [1exp<aS£A )] ~ % <r 2) <as) =S 42)
Pc Pc 4=1 T Pco o Te

since asl — T large values oA give the dominant contribution to the above sum and the sum may be replaced by an
integral (5’ y* te Ydy=T(x)) [38]. Heref§ = %2 This leads directly to the familiar relatign — py ~ €P.
Similarly, one finds that along the coexistence line the specific heat at constant volume is [17, 182]

82 PcoexV

C\/:Tz T

| ~ 2% g (43)
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FIGURE 9. Top three plots: the scaling of Eq. (36) fdr= 3 bond breaking percolation on the simple cubic lattice of kige9,

6 and 4 § is the bond breaking probability) [185]. Bottom left plot: the scaling of Eq. (36)dfer 3 Ising model on the simple

cubic lattice of side. = 50 [190]. Bottom right plot: the magnetization as a function of reduced temperature. The open circles show
the magentization predicted via Fisher's theory (see text) and the solid line shows a parameterization for the magnetization.

Finally, one the isothermal compressibility can be found to be [156]

K= ——|T~ego ~eg ¥ (44)

thusy = =,

The thrge examples above show how Fisher’s theory leads to the power laws that describe the behavior of a system
near its critical point. Putting the equations definmiag3 andy together recovers the scaling law+ 23 + y = 2 and
illustrates that (aside from so-called “hyperscaling”) there are only two independent expanems £ in Fisher’s

theory) from which all others are recovered.

Excluded volume effects on Fisher’s theory

The final entry into this section discussing Fisher’s theory is the effect of the non-zero volume of real, physical
clusters. Fisher’s theory, like any physical cluster theory, assumes that the clusters have no volume. Obviously this is
not the case, so how well does Fisher’s theory do in describing real clusters which have non-zero volume [40]? We have
already seen in Fig. 9 that Fisher’s theory collapses the cluster concentrations of computer models quite well when
the parameters (exponents, critical temperature, surface energy coefficient) are allowed to vary; the values returned for
these parameters from the fitting procedures usually agree well with expected values [185, 190] (with the exception of



o for thed = 3 Ising model, though that discrepancy may be the result of using clusters that are too small, see Fig. 7
and the discussion above).

In the case of physical fluids the effects of the non-zero volume of clusters at the critical point can be studied by
realizing that Fisher’s theory gives the compressibility factor as the ratio of two Rieghamctions

P _ SRAT _ L) s

Tepe ZX=1A1_T E(t—1)

When the compressibility factor for real fluids (e.g.%4IBe, ethane, acetylene, GEH, C;HsCl, etc.) was analyzed

it was found thatt = 2.202+4+0.004 which is to be expected fdr= 3 systems [25]. This result indicates that for real
fluids the value ofr is not greatly affected by the finite size of the clusters. An analysis of the “excluded-volume”
effect and Fisher’s theory later showed that the scaling laws ¢e+23 + y = 2) were unchanged [27].

If the exponents and scaling laws are unaffected by the non-zero volume of clusters, then what are the effects of
the non-zero volume of the clusters? To answer this question we turn our attention back to the self-avoiding polygons
[192]. Figure 7 shows that using the directly counted combinatggasve were able to reproduce the behavior of
clusters from thel = 2 Ising model on a square lattice, up to a point. The critical temperature predicted by the self-
avoiding polygonsl; = 2.06 is approximately 10% below Onsager’s analytically determined vVRlue2.26915 ..

[5].

To improve the above estimate ©f, at coexistence, we think of an initial configuration of a cluster Wgh— oo
constituents and surfacsg and a final state of a cluster #fconstituents and surfaseand its complement: a cluster
of Ac = Ag — A constituents and surfasg. This assumes stochastic cluster formation and is supported by the Ising
cluster’s Poissonian nature [190]. Now the free energy of cluster formation is

AG = AE — TASH PeoedV = ay [A+ (Ag— A) — Ag] +as(s+ S — %) — T (INgsa+INgs. A, —INGsy a,) + PAV  (46)

AV is the volume change between the initial and final configurations. All terisancel. In the limitdg — oo, S~ 5
and Ings, =~ Ingg, leaving only the cluster’s contribution to tiA&. The volume change for the lattice gas is

AV =a; [A+ (Ag—A) — Ag] +1(s+ 5 — 0) (47)

wherea; is the geomertrical prefactor relating the cluster volume to the cluster nufvdoat! is the interaction range
between two constituents, one spacing on a lattieel. The second term of Eq. (47) arises from the fact that no two
clusters can come within a distanicef each other and be considered two clusters, thus each cluster has a i®lume
surrounding it which is excluded to all other clusters.

In in the Ag — oo limit the first term of Eq. (47) cancels. The second term of Eq. (47) depends only on the cluster’s
surface. Writing the partition function for a cluster@$V, T) ~ exp(—AG/T) [38] and now including the excluded
volume factor from Eq. (47) gives

ne(T) ~ gsexp(—ais) exp(_ch_lciexIS) N gosxexp[_S(as—Tbs+2pcoe>J> ) (48)

T T

The factor of two arises from moving the cluster from one phase to the other: imagine taking a cluster from the
condensed phase, which leaves behind a bubble, and placing it in dilute phase. Both the bubble in the condensed phase
and the cluster in the dilute phase have the associated excluded volume contribigion of

Just as above, the “microscopic” portion of the surface free energy vanishes at the critical point so

_ast+2pd  as | 2pd
T="h b b

(49)

The first term in Eq. (49) can be thought of as the “ideal” critical temperature and the second term can be thought of
as the correction that arises due to the non-zero volume of the cluster. Working at the critical pojmtavifiil1 for
thed = 2 Ising model, Eq. (49) givek = 2.29, within 1% of the Onsager value [5].

Equation (48) also provides a good description of Ising cluster yields. Figure 10 shows the Isingnaélds=
Yshsa(T)) of a two dimensional square lattice of sitle= 80 and the predictions of Eq. (16) and (48) (both
at coexistence and both using the directly courggdl combinatorics of the self-avoiding polygons) witto fit
parameters
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FIGURE 10. Left: Ising cluster yields from thel = 2 square lattice (open circles) at four different temperatures compared to
Eq. (16) (filled circles) and (48) (filled squares) (both at coexistence and both using the directly @aunéaenbinatorics of the
self-avoiding polygons) witimo fit parameter§192]. Right: the densitpcoexand pressur@coex at coexistence from the Onsanger
solution (solid line), fromd = 2 Ising calculations on the square lattice [203] (open circles), from Egs. (38) and (16) (filled circles)
and from Eqgs. (38) and (48) (filled squares).

Figure 10 also shows the integrated quantities of the density and pressure along the coexistence linke=f@& the
Ising system. The values @koex and peoex determined from calculations on the square lattice [203] (open circles),
from Egs. (38) and (16) (filled circles) and from Egs. (38) and (48) (filled squares) are compared to the analytical
solution of Onsager (solid line) [5]. One can still assume that the formation of clusters exhausts all the non-idealities
and simply calculate the pressure and density from the self-avoiding polygon combinatorics and the finite cluster
volume concentration, the equations

S(as+2Pcoed ) s(as+ 2pcoex|)}

Pcoex=T g,Aexp{—} andpcoex= Ag&Aexp{— (50)
coex s; S, T coex ; T

were solved iteratively usings = 2 and the directly countegs o [180]. As one might expect, at low temperatures,
where the dilute phase is very dilute, the “ideal” expressions of Eqgs. (38) and (16) work quite well. However as
the temperature increases and more and more clusters appear in the dilute phase the “ideal” expressions fail and
predict, as expected based on the cluster concentration predictions, pressure and density values that are higher than the
Onsager solution [5]. The non-zero volume expressions of Egs. (38) and (48) follow Onsager’s solution and the Ising
calculations more closely.

The conclusion of this exercise is thatal0% change i from the “ideal” estimate is enough to approximately
offset any effects of the non-zero volume of the clusters. Thus by ledyiag a free parameter when fitting cluster
concentrations, or by obtainirig from other methods (e.g. the Onsager solution for the Ising model on a square lattice
[5]), one accounts, for the most part, for the effects associated with the non-zero volume of the clusters.

Summary

We have seen that Fisher’s theory is a physical cluster theory. Fisher's main contribution was to introduce an accurate
approximation for the entropic contribution to the cluster partition function. This lead to the development of a theory
that shows both types of scaling: the singular behavior of quantities near that critical point and the scaling laws that
relate exponents as well as the data collapse of cluster concentrations. Fisher’s theory has an unphysical surface tension
above the critical temperature, however beliuit serves as a good approximation that lends itself easily to a physical
interpretation. Though Fisher's assumption about the mean surface of a cluster is crude (using a constant values for
ap ando ignores the temperature dependence of the mean surface of a given cluster size) and it explicitly ignores the
non-zero volume of the clusters (though implicitly the finite volume is almost all accounted for by the proper choice of
Te) it has successfully: described cluster production in percolating systems and Ising systems (see above); reproduced
the compressibility factor at the critical point (see above); predicted (within a few percent) the compressibility factor
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nuclei after bombardment from 190 MeV protons [11]. The slopes of the lines give the inverse of the effective temperature of
evaporation.

of real fluids from the triple point to the critical temperature [29, 88]; and has been used to describe the nucleation rate
of real fluids [31, 75].

A BRIEF HISTORY OF NUCLEAR CLUSTER PRODUCTION

#n the beginning there was neutron evaporatign4], and the evaporation was go¢l]. ..

It was noted long ago that statistical methods could be applied to nuclear processes if the energies involved are
large when compared to the lowest excitation energies of nuclei [3]. By doing this, Weisskopf was able to formulate
expressions for the probability of neutron (or charged particle) emission from excited nuclei. Weisskopf based his work
on evaporation from a body at low temperatures. In that regard, Weisskopf was working out the formula to describe
the evaporation of neutrons from a hot nucleus, i.e. he was describing a first order phase transition in nuclear matter
with a neutron leaving the condensed phase (the hot nucleus) and entering the dilute phase (a very low density neutron
vapor).

Following Bohr, Weisskopf divided processes initiated by nuclear collisions into two stages: the first was the
formation of a compound nucleus and the second was the disintegration of the compound nucleus. Both stages could
be treated independently. The energy of the compound nucleus is similar to the heat energy in a solid or liquid and
the emission of particles from the compound nucleus is analogous to an evaporation process and Weisskopf derived
a general statistical formula for the evaporation of particles from an excited compound nucleus (with the caveats of
the finiteness of the nucleus and the fact that the evaporation of a particle takes away significant energy from the
compound nucleus).

The probability per unit time of a nucledg with excitation energye* emitting a neutron of mass, with kinetic
energy betweed’ and& + d& (wheredé& is much larger than the levels 8§), thus transforming itself into nucleus
A with an excitation energig* — Eg — & (whereEy is the neutron binding energy 8§) is

wn(g)dgza(Eo,g);“gexp{—g_T ['”gﬁ?_s‘“ f&)] }dé" (51)

wherec (Ep, &) is the mean cross section for the collision of a neutron of kinetic eng€rgith nucleusA. of energy

E* — Eg — & resulting in the production of nucleuws of energyE*; g is the number of states for the spin of the
particle under consideratio®E) = In (E) corresponds to the entropy of a nucleus with and energy bet&eel

E +dE (and density of levels(E)); T is the temperature at whidh is the most probable energy of nucles and

f(e) “contains all further terms of the development.” The probability per unit time for the evaporation of particles of



nucleon numbeA, chargeZ and massna from nucleustg is

)
Wa (€)d& = nR3 <£’eZZROOZ>neXp _ = Ro } ¢ (52)

&+PLZ_T [|ng+s%—s%— f(& — RLL

whereRy is the radius of the compound nucleus afdis its charge. It is no surprise, given that Weisskopf had
evaporation in mind, that equations (51) and (52) are similar to Fisher’s estimate of the cluster partition function given
in Eq. (12).

Multiplying the total probability of particle emission tythen gives the decay width: for neutrons:

_ My
Mh= GWTzeXp(ngrS%—SAC) (53)
(whereo is the mean value of (Eg, &) f(&£) averaged over the Maxwell distribution) and for charged particles

= ao%Tzexp(lnm-S%—S%). (54)
Thus Weisskopf developed a theory of nuclear evaporation, i.e. a theory of first order phase transition in finite, charged,
asymmetric nuclear matter.

Experimental evidence of neutron evaporation appeared in the energy distributions of neutrons measured after
various nuclei were bombarded with 190 MeV protons [11]. Equation (51) gives the probability of the evaporation of a
single neutron from a single compound nucleus at a specific excitation energy. However, experimental measurements
of neutron kinetic energy distributions were measured for neutrons that came from a cascade of successive evaporations
from compound nuclei with a distribution of initial excitation energies. Thus to connect Eq. (51) with the experimental
measurements the successive neutron (and proton) evaporation and distributions of initial excitation energies had to be
taken into account which gives [11]

&

Wh(£)dé€ O o (Ep, &) (f)ilexp<—_l_> %déo (55)

wherei is the generation of the evaporation. Figure 11 shows logarithmic plots of scaled neutron energy distributions

(% vs. &) follow a straight line whose slope is the inverse of the effective temperature of evapdraiite
plots in Fig. 11 are similar to the Arrhenius plots of nuclear cluster yields observed latter [121], as such they present
early evidence for thermal scaling in nuclear evaporation.

The thermal nature of cluster production in nuclear reactions was seen to extend all the way to fission [12, 20, 81,

92, 102]. The fission cross probability and fission cross section can be written as

o T
B = oo and Of = Op r, (56)

where - Es
r :TpS( 7Bf7gsr)
2np (E* —EP)

't andl't are the fission and total decay widtlBs,is the fission barrelps is the saddle-point level density,is the
compound nucleus level density aBfilandE?® are the saddle and ground-state rotational energies.
For large excitation energieE{ > By, E* > E® andE* > EP) the fission width is

_ Tps(E*—By) - Tps(E*) -8B ~ l _ 5
T o E) C2mp(E)° T2t (°8)

(67)

where the Boltzmann factor arise from the first-order term in the Taylor expansiopgdBh— Bs). Then in the limit
that the nucleus behaves as a Fermi gas With /E* /a the natural logarithm of the fission probability should go as

InF}:InD:%— 7

ER = )
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FIGURE 12. Left: The fission probability? as a function of the inverse of the square root of the excitation erlﬁ*?gﬁr/z for
the reactiong3%Ph(*H, f), 337Au(*H, f) and3§W/(*H, f) [20]. Middle: (a) The fission probability plotted as a function of
E*~Y2 for the o induced reactiond%pPh(a, f), 197Au(a, f) and184W(a, f) and (b) the electron induced reactic?¥Bi (e, f),
298pphe ), 174Yb(e f) and'>*sSm(e, f) [81]. Right, top: the logarithm of the reduced mass-asymmetric fissiorRatiwided by
2./, as a function oE* /2 for the compound nucléiPBr, 2°Mo, %Mo and10112n [92]. Right, bottom: the logarithm of the

reduced mass-asymmetric fission rRedivided by 2/a@, as a function of* /2 for the compound nucleiB61871880g, 20|
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where and % are constants. Consequently, a plot of the natural logarithm of the fission probabilities veydrs 1
should be linear. This is just the case as is shown for several fission reactions in Fig. 12 [20, 81].
For lower excitation energies and nuclei wih>> B, (the neutron evaporation barrief)y ~ 'y. Then Eq. (56)
can be rewritten as
2np (E* — S)

T ps(E" — By — Ep) ~ @VA(EBE), (60)
where we have assumed a simplified form of the Fermi gas level density, and therefore,
2 —E?P
1. R mp (E %) InR a
2\/a Zf an

whereas anda,, are the level density parameters associated with the fission saddle point and the ground &aite and
the reduced mass-asymmetric fission rate. The neutron width can be approximated as

2mnRng2p(E*—Bn— )
R " 2np (B*—E)

M——="

T (E*—Br —E?) (61)

M~

(62)

whereBy, is the last neutron binding enerdly, is the temperature after neutron evaporation Riglthe radius of the
compound nucleus.

For fission excitation functions in the Pb region, strong shell effects make the approximation

*_R _E9S
p (E —By—E9) [ V(B -Bu-E7) (63)

a very poor one. However, for excitation energies higher than 15-20 MeV, the level density assumes its asymptotic
form [32]:

«+_Rp _EF9S_
p (E—By—E®) O 82\/an(E Bn—Er Ashell)7 (64)
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FIGURE 13. The inclusive cluster yieldsa as a function of cluster siz& from the reaction of 8& Epeam< 350 GeV protons
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wherelgnhe is the ground-state shell effect of the daughter nucleus after neutron evaporation. Assuming this asymp-
totic expression for the level density after neutron evaporation, the fission excitation functions can be fit with Eq. (56)
usingAshel as a free parameter in the expressionfer~ I, [102].

Thus, a plot of the left hand sige of Eq. (61) (which can be constructed from measured fission cross sections and
known non fission channels (mostly neutron evaporation)) vey&tis— B, — EF should be linear (actually a 4%ine
for as = a,). That this is so can be seen in Fig. 12 [92, 102], where a large number of fission excitation functions scale
exactly to the same straight line illustrating the thermal nature of cluster production in nuclear fission reactions.

If the analogous behavior of evaporation from excited nuclei and evaporation of classical fluids holds, then one
expects that as the temperature increases the first order phase transition (evaporation) becomes a continuous phase
transition at a critical temperatuiig above which there is a smooth cross over from the liquid-like phase of ordinary
nuclear matter encountered at low excitation energies to a gaseous phase where the average interparticle distance
is much larger that the range of the interparticle interaction. Thus, when inclusive (i.e. the average cluster yield for
a given cluster sizé\ was generated by averaging over all excitation energies) cluster yields from the reaction of
80 < Epeam< 350 GeV protons incident on krypton and xenon nuclei exhibited a power law (as expeatgdTtorin
Eqg. (16)) with an exponent between 2 and 3 (as expected b 3 systems [41]) it seemed possible that the critical
temperature had been reached [49, 50, 52, 53].

An analysis of the isotopic cluster yields provided further evidence that the clusters arising fromXleeapd
p+Kr reactions were thermal in nature and perhaps critical. The measured inclusive yields were fit to a version of
Fisher’s theory modified to account for the nuclear aspects of the fluid in question. Specifically th&' yfeldsof a
cluster withA nucleonsN neutrons and protons were fit with the following parameterization [50, 53]
avA— A2 — ac 2y —aa B2 5 N+ 2

T

Y(A,Z) =CA “exp +NIn%+ZIn§ (65)

with § = apA~%/4 for odd-odd nuclei§ = 0 for odd-even nuclei andl = —ayA~%/4 for even-even nuclei. Here Fisher’s
theory has been modified to use Weizécker's semiempirical mass formula (the first five terms in the Boltzmann factor)
and a chemical potential for neutrons and protons (the last two terms in the Boltzmann factor). The final terms in the
exponential in Eq. (65) take into account the entropy of mixing protons and neutrons. Figure 14 shows the results for
the 59 different isotopes from theqKr reactions and 62 different isotopes from theXe reaction fit to Eq. (65) with

the free parameters and results given in Table 1.
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FIGURE 14. Top (bottom): the isotopic inclusive cluster yieldf$A,Z) as a function of cluster sizA from the reaction of
80 < Epeam < 350 GeV protons incident on xenon (krypton) nuclei [50, 53]. Circles represent data, while squares are the fit
according to Eq. (65). The dashed and solid lines are drawn to guide the eye.

TABLE 1. Values for the parameters in the fits to the isotopic yields. These values were calculated bafixirigh.1 MeV
and leaving the remaining parameters free [50, 53].

Parameter ay (MeV) aj(MeV) ac(MeV) aa(MeV) ap(MeV) pp(MeV) pun(MeV) T MeV T

Nominal
value 14.10 1300 060 1900 3350 221
p+Kr 14.10 553 049 2266 592 -11.32 —7.59 328 264
p+Xe 14.10 661 040 2330 528 -11.01 —7.62 324 265

In a similar analysis [69], the inclusive cluster yields{(Z < 14) from the reaction of pXe was fit to Fisher's
theory in a more generic form

na(T) = ghA *XATYA (66)

where the surface free energy contribution is foun&is exp(—aie/T) and the chemical potential contribution id
found inY = exp(Au/T). The energy of the incident proton was varied fr@gam= 1 GeV toEpeam= 18 GeV.

At each beam energy the inclusive cluster yields were fit to Eq. (66) with the normalizatiot andY left as free
parameters and the exponewtsand 7 were fixed to theid = 3 Ising values. Figure 15 suggests that at low beam
energies the system is super saturated (1 indicates thaf\u > 0) and there is a sizeable surface free energy cost
in cluster formation. As the beam energy is increased, the system moves towards coex¥steriteand the surface
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FIGURE 16. Left: the pressure as a function of volume; the dashed curves show the van der Waals fluid and the solid curves
show the results for a system interacting through a Skryme force [51]. Middle: The nuclear cluster yields of reference [49] fit with
the theory of refrence [57]. Right: the outer solid curve is the temperature-density coexistence curve, the middle solid curve is
the isothermal spinodal and the inner solid curve is the isentropic spinodal; dashed curves show trajectories for constant entropy
expansion (top) and constant energy expansion (bottom) [64].

free energy vanishexX(— 1). For beam energies above 12 GE\=Y = 1 and the cluster yields are well fit by a
power law.

While the results of the analysis of the above two experiments are not completely clear, it is clear that the clusters
created in these reactions are well described as a thermal phenomenon. Regardless of whether the critical point was
reached, the inclusive cluster yields for three different reactions over a wide range in excitation energies were well fit
by Fisher’s theory. Using Fisher’s theory to describe the cluster emitted from highly excited nuclei was, in hindsight,
a natural extension of the theoretical work of Weisskopf [3] and the experimental work on neutron evaporation [11].
Specifically the extension of Weisskopf’s particle evaporation probabilities to include Fisher’s estimates of the entropic
cost of cluster formation is much the same as the actual development of physical cluster theories [182].

The above experimental results stimulated much theoretical interest in the possibility of critical phenomena in
nuclear matter [51, 56, 57, 58, 62, 63, 64, 70, 71, 78, 80, 83, 84, 86, 87, 91, 93, 98, 99, 103, 104, 112, 115, 117, 127,
137, 144, 147, 157, 173, 178]. These efforts can be separated into two different categories: analytical/semi-analytical
theories [51, 56, 57, 62, 63, 64, 99] and computational models: both on a lattice [58, 70, 71, 78, 80, 83, 84, 98, 104,
115,117,127, 137, 147, 157, 173] and off [86, 87, 91, 93, 103, 105, 112, 116, 118, 130, 135, 144, 168, 172,174, 177,
178, 206].
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FIGURE 17. Results from from percolation models. Left: the dependence of the cluster yields as a function of the bond breaking
probability (top:g = 0.35, middle:q = 0.60, bottom:q = 0.80) for the reaction  Xe [58]. Middle top: a doubly logarithmic plot of

the mass yield fog = 0.6 for the reaction p-Xe, the straight line shows the power |&v252 [58]. Middle bottom: a comparison of

the data from ref. [61] (open circles) and the percolation model [71] (solid line). Right: the second moment of the cluster distribution
as a function of the cluster multiplicity for the reaction of 1 AGeV-AQ: histogram: percolation [98]; circles: data [85].

The analytical/semi-analytical theories employed various methods (e.g. particles interacting through a Skyrme force,
finite temperature Hartree-Fock theory and another nuclear extension of Fisher’s theory) to determine the critical point
of bulk (i.e. infinite, uncharged and symmetric) nuclear matter and the liquid-vapor phase boundary. This lead to
estimates of the critical temperature in the range 06 12eV to 289 MeV depending on the theoretical techniques
employed. Once estimates were made for bulk nuclear matter, the effects of a finite number of nucleons and a fluid
made up of two components (one which carries an electric charge) were studied. Those effects generally lead to a
lower critical temperature with estimates betweeheV and 205 MeV.

Computational models on the lattice attempted to study the process of nuclear cluster formation from “the bottom
up” by modeling in a simple way the short range interaction of the nucleons. This was done both geometrically with
perolation models [58, 70, 71, 78, 80, 83, 84, 117] and thermally with lattice gas (Ising) models [104, 115, 127, 137,
147, 157, 173].

The percolation model describes the excited nucleus in question as a lattice with nucleons at every vertex. The
distance between each vertex, or the lattice spacing, depends on the density of normabgankbis approximately

p§/3 ~ 1.8fm. Bonds between the nucleons are broken with a probahi{i&y ) that depends on the excitation energy

E* of the system: the greater tlig' the higher the value aj [58, 71, 83]. This mapping of excitation energy onto

bond breaking probability is similar to the mapping of a ferromagnetic Potts model onto a corresponding percolation
model [24, 28, 44, 83]. Thus the percolation model becomes an Ising model and the success in describing a thermal
phenomenon such as cluster production from an excited nucleus is to be expected. Figure 17 shows that the percolation
model was able to reproduce many of the observations of the experimental measurement: the cluster yields were
described by a power law at some valueqdE*) and matched experimental measurements. The model also gave
indications of what would be expected for exclusive cluster yields, i.e. cluster yields that could be separated based
on some measure of the excitation energy of the reaction. The percolation model was compared with data from many
other reactions and studied the influence of the shape of the lattice boundary (e.g. spherical [78] and toroidal [80]) and
has successfully described the clusters arising from excited gold nuclei [98, 169].
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FIGURE 18. From left to right: a plot of the natural log of the third moment of the cluster distribution as a function of the natural
log of the second moment for nuclear clusters [59, 66]; a plot of the natural log of the third moment of the cluster distribution as a
function of the natural log of the second moment for bond percolation on the simple cubic lattice [66]; the second moment of the
cluster distribution as a function of the total cluster multiplicity for nuclear data (full circles), percolation on the simple cubic lattice
(open circles) and percolation on a line (crosses) [70]; the size of the largest cluster as a function of the total cluster multiplicity (see
previous plot for symbol definition); and the fluctuations in the size of the largest cluster as a function of total cluster multilpicity
[70]. See text for discussion.

A complete (every cluster measured), exclusive data set of the clusters from the reaction 900 AMaaulsion
[59] was compared to the clusters from bond percolation on the simple cubic lattice with 216 sites [66, 70]. The
moments from each cluster distribution were calculated as

A<Amax
My (T) = Azl A (T). (67)

where Amax is the size of the largest cluster in a given event or lattice realization. In the case of the percolation
moments,T was replaced with the bond probabildyaccording to common practice [41]. In the case of the nuclear
moments,T was replaced by the total cluster multipliaty(more specifically the total charged particle multiplicity)

and the nucleon numbét of the cluster was replaces with the charge of the cludt@drhe moments of the cluster
distribution were used to determine the value by plotting the third momentis as a function of the second moment

M, and recalling (see above discussion on scaling from Fisher’s theory or reference [41]) that for

T—1-k

Mi O le| < (68)

-4

so thatMz O Mzm. Thus the slope of a plot of M3 as a function of IiM; is related to the exponentand for both

percolation clusters and nuclear clusters this analysis yielde@.2 + 0.2 [66]. On a more qualitative level, a plot of

the natural log of the size of the largest clusigx (or the charge of the largest nuclear cluggry) as a function of

InM2 shows two branches. This is also shown in Fig. 18 where the upper branch can be thought of as the condensed

phase (all particles in a single large cluster) and the lower branch can be thought of as the dilute phase (all particles in

small clusters). Finally, comparisons of the second moment, largest cluster size and fluctuations in the largest cluster

size all as a function of total cluster multiplicity shown in Fig. 18 show a similarity between the nuclear data (full

circles) andd = 3 percolation (open circles) but not with= 1 percolation (crosses) a system without a phase transition

[41]. The conclusion of this analysis was that nuclear clusters are produced from a system that behaves as finite systems

which have a phase transition in the infinite limit. Behavior of this sort for the second moment of the cluster distribution

and size of the largest cluster has been observed in many experiments [82, 138, 145, 156, 175, 181, 184, 185, 204].
In reactions of 600 AMeV Au on various targets (C, Al, Cu and Pb) a high degree of universal scaling behavior

was observed [77, 79, 82]. Figure 19 shows the behavior of the mean charge of the largestLhagtethe value

of 7 of the cluster distribution, the mean number of intermediate mass clusters (where an IMC is defined as clusters

with charge 3 Z < 30) (Muc) and the mean longitudinal velocity of a cIus(é.fH> and the ratio of the clusters’ root

mean square deviations of the transverse and longitudinal velocityrmgrms(f) ) all as a function of the violence

of collision (the more violent the collision, the higher the temperature). The universal scaling behavior associated with

measures of the cluster yields indicated that the cluster yields did not depend on the target but on the energy deposited

by the collision and is a necessary—though not sufficient—condition for chemical equilibrium being established. The

universal scaling behavior ¢f;) and rmg. ) /rms(p|) are compatible with the assumption of a kinetic equilibrium
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FIGURE 20. Left: The natural logarith of the threefold, fourfold and fivefold probabilities normalized to the twofold probability
(symbols) as a function &*~1/2, lines are best fits to the data [81]. Middle: (a) The reciprocal of the binary decay probaiity 1

or (b) the ratia /t, as a function of the square root of the transverse erﬁfd‘{fz, solid lines are fits to the data in the upper panel
only [90]. Right: The experimental (symbols) and the calculated (solid) probability toremtiérmediate mass clusters (IMCs) as

a fucntion of the transverse enery Forn=0-8, P" (P(n) in the figure) is calculated assuming a binomial distribution with the
values ofP, from the linear fits shown in the plots immediately to the left and the corresponding valoesayfh Eq. (76) [90].

being accomplished prior to the decay of the primary spectator [79]. The universal scaling behavior shown in Fig. 19
supports the idea of equilibrium that Wiesskopf (following Bohr) had in mind in his neutron evaporation work [3].

An analysis of the clusters witd > 5 produced in the reactions 60 AMeV AW\, V and Cu showed that the
natural logarithm of the branching ratios for binary, ternary, quaternary and quinary decay depended linearly on
E*~1/? strongly suggesting the clusters were produced statistically [81]. These results were the natural extension
of the analysis of Weisskopf [3]. This can be seen by assumingBhaBs, By, ..., B, are the average “barriers”
associated with binary, ternary, quaternary and quinary decays (i.e. a reaction at a given #&luesafits in one,
two, three, or four clusters and the residual nucleus). The decay prob&gifity each channel is proportional to the
level density of the system(E*) as

P(E") Op(E"—Bn) (69)



Using a Fermi gas level density with a constant level density parametsd in the limit thaE* >> B, gives

P (E") O exp(—l?l_") . (70)

Figure 20 shows that the ratio offold events to binary events

In (g) 0— % (Bn—By). 71)

is linear in E*~Y/2 which is proportional toT. The linearity of InR,/P>) as a function of some measure of the
temperature is called thermal scaling and is an indication that these clusters were created thermally.

Arelated analysis of cluster multiplicity distributions for the reactions 80 and 110 AMeMMrreactions exhibited
binomial behavior at all excitation energies [90]. That is, a single binary event probabikityuld be extracted with
a thermal dependence indicating that cluster production is reducible to a combination of nearly independent emission
processes. Once again this arises naturally from Weisskopf’s work on nuclear evaporation [3]. The partial decay width
for a given binary channel is approximately

Moo ﬁwﬁxp(—iz) (72)

whereaw, is a frequency characteristic of the binary decay channel. In fisgipis, the collective frequency of assault
on the barrier an® is the fission barrier. The binary decay probability is related to the partial decay width

P
P, ~ Ry’ (73)
The channel period is = 1/ @, and the corresponding decay time is
t :tzexp<l?_i_2) . (74)

For nuclei with smalE* (e.g. compound nuclei) the total decay width is the sum of the widths over all channels. For
nuclei with largerE* only the decay width of the binary channel need be considered, while the abundant light particle
decay can be treated as a background that may modifydB,.

If we assume that the excited nucleus has the opportunity totitmes to emit a cluster with constat probability
of success, then the probabiliBf" of emitting exactlyn decay productsn(— 1 clusters and the residual nucleus) is
given by the binomial distribution

m __ L 209 m-n
A = ey (P2 (=R (75)
The average multiplicity and variance are then
(n) =mR ando? = (n) (1—PR,) (76)

thus one can extract the valuesRefandm directly from experimental measurements of the mean multiplicity and its
variance at any excitation energy. This is shown in Fig. 20 for data from the reactfSAmf1%7Au. One can also

extractP, “differentially” from the ratios ofﬁp{‘mﬁ1 from
n-

1 t R'm-n

= 1 77
R G Pl ntll (77

These results are also shown in Fig. 20 for data from the reactitAof-1°’Au. Both the method of measuring the
mean multiplicity and variance and the differential method show a linear relation to the square root of the transverse
energyk;. E; is defined as,Ze.sin2 6,, whereg is the kinetic energy of th&h particle detected in an event and and

6; is the angle between the particle and beam direction [90] and is proportional to the excitationEhedgigh is
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FIGURE 21. Left: Top: Arrhenius plots of the cluster charge yield of various reactions (see legend) distributions as a function of
the square root of the inverse of the transverse engrggolid lines show a fit t& (Z,E;) = Boexp<fBz/Etl/2). Bottom: The
behavior of the extracted barriBy as a function of the charge of the cluster [129]. Middle: Top, left: Arrhenius plots of the
cluster yield distributions from bond percolation on a simple cubic lattice as a function of the bond breaking protpaddliity

lines show a fit toY (A,q) = Bopexp(—Ba/q). Bottom, left: The behavior of the extracted bariy as a function of the cluster
number, solid lines show a fit 8 = alA°, botha, ando were in agreement with the expected valuesifer 3 percolation. Top,

right: Arrhenius plots of the cluster yield distributions from the reaction 1 AGeM-8uas a function of the square root of the

inverse of the excitation enerdy", solid lines show a fit t&/ (A,E*) = Boexp<fBA/E*l/2>. Bottom, right: The behavior of the

extracted barrieBp as a function of the cluster number, solid lines show a f4o= a A°, the value ofoc was in agreement with
the expected values for= 3 Ising value and the value af was roughly half of the expected value for nuclear matter [153]. Right:
Top: Arrhenius plots of the cluster yield distributions from a simple cubic Ising lattice as a function of the temp&ratatiel
lines show a fit tdr (A, T) = Bopexp(—Ba/T). Right, bottom: The behavior of the extracted barBgras a function of the cluster
number, solid lines show a fit B8 = aLA°, botha, and o were in agreement with the expected valuesdet 3 Ising systems
(also shown is the power law iy (T¢) at the critical point) [190].

proportional toT?, thusT O v/E;. The thermal scaling of IfL/P>) (or In(t/t2)) is an indication that these clusters
were created thermally.

Figure 20 also shows a comparison between the experimental excitation functions and those calculated using the
vales ofP, from the linear fits in Fig. 20 and the associated valueséfom Eq. (76). The quantitative agreement
between calculations and the experimental data confirm the binomality of the process which created these clusters
and demonstrates that the probability of produaingl clustersp, is reducible to the probability of producing one
cluster,P,. This type of reducibility is a strong indication that the clusters were created independently of each other.

The above signatures have come to be called reducibility (the probability of the productictusfers is reducible
to the probability of producing a single cluster) and thermal scaling (the natural logarithm of the cluster yields is
proportional to an inverse of some measure of the temperature). The presence of these signatures has been amply
verified in nuclear reactions [81, 90, 95, 100, 109, 121, 129, 143, 148, 149, 153, 158, 166] and has been shown to be
present in percolation [153], Ising [155, 172, 190] and classical molecular dynamics models [206] as well as inherent
in Fisher’s theory [153, 190].



TABLE 2. Values for the critical exponents. The exponent values given by the ratio of integer numbers are known exactly.
The exponent vales not followed by citations are determined via the scaling relations given above. The exponent values for
nuclear matter are the average for results from experiments which measured exclusive cluster yields [85, 108, 123, 138, 153,
169, 170, 175, 184, 185, 181, 204].

B Y o T
d = 2lsing 5] 115l 2 3
d=3Ising 0.3265+0.0001[176] 1237+0.002 [176] 06395+ 0.0008 2209+ 0.006
Nuclear matter 0.32440.008 125+0.07 063-+0.02 218+0.02
d = 2 percolation 3 [42, 43, 46] 12142, 43, 46] 38 B8/
d = 3 percolation 0.418+0.002 1793+0.003 04522+0.0008 [136] 218906+ 0.00006 [136]
mean field i 1 2 z

Fisher’'s theory shows thermal scaling quite clearly. Begining from the cluster number concentration as given in
Eq. (16) and working at coexistenasy( = 0) we can immediately write

/AO' /AO' B
na(T) = gE)ATexp<aS_|_C ) exp(— as_l_ ) = Boexp<—_|_A> (78)

where By contains all the temperature independent terms Bgds the barrier associated with the production of
a cluster ofA constituents. Equation (78) shows that the barrier should increase with increasing cluster number:
Ba = aA°. This behavior was observed in a wide variety of heavy ion collisions over a broad range of energies when

the natural logarithm of the yield of clusters of a given charge were W E;) = By exp(—Bz/Etl/2 wherekE; is

the transverse energy [129]. The left column of Fig. 21 shows the fit4Z0oE;) and the behavior of the extracted
barrierBz as a function of the charge of the cluster in question. The middle column of Fig. 21 also shows the barriers
Ba determined from the cluster yields as a function of bond breaking probadpfiitybond percolation on the simple
cubic lattice ¥ (A,q) = Bpexp(—Ba/q)) and from the cluster yields as a function of the square root of the excitation

energyE* (Y(A,E*) = Bg exp(—BA/E*l/Z)) for the reaction 1 AGeV Au#C. For both percolation and the nuclear

reaction the barrieBa was observed to vary @A° with a ando equal to their percolation values for the percolation

clusters anar equal to itsd = 3 Ising value for the nuclear clusters asidroughly half its expected value for nuclear

matter [153]. The right column of Fig. 21 shows the barriBssdetermined from the cluster yields from a simple

cubic Ising lattice as a function of temperatudgA, T) = Bopexp(—Ba/T)) [190]. Again the value of the barrier

Ba went asafA° with bothaj and o close to their expected values. In all cases clusters of a wide range in size (as

measured by or A) and over a wide range in “temperature” (as measurel; bl*, q or T) showed thermal scaling.
Reducibility: Poissonian for the case of infinite systems

Ph= %e—@. (79)
and binomial for the case of finite systems (see Eq. (75)), is inherent in not only Fisher’s theory, but any physical cluster
theory which assumes that a non-ideal vapor can be approximated by an ideal vapor of clusters with the formation of
clusters exhausting the non-idealities. Thus, the stochasticity implied by reducibility is present in physical cluster
models where all clusters are completely independent of each other. Figure 22 shows the reducibility feature observed
in the cluster distributions arising from a variety of nuclear reactions [81, 90, 95, 100, 109, 121, 129, 143, 148, 149,
153, 158, 166] as well as from percolation calculations [153], Ising calculations [155, 172, 190] and classical molecular
dynamics calculations [206].

Using reverse kinematics, the clusters produced in the reaction of 1 AGeXCAwere studied [85]. The moments of
cluster charge distributiorid (m) were analyzed in a similar fashion to the percolation cluster distributions discussed
above (the total charged particle multiplicitywas used as the “control parameter” in lieu of the more standard bond
probability g, temperaturd or excitation energ¥*) [58, 66, 70, 71, 84, 117]. In this case the location of the critical
point is given bym, the total charged particle multiplicity of clusters produced when the system reaches the critical
point. Similarly, the distance from the critical point is givendy m. — m. Fisher’s theory (specifically the steps that
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FIGURE 22. Top, left: the excitation functionB, for carbon (left column) and neon (right column) emission from reactions
36Ar+197Au at 100 AMeV (top panels) antfXe-+°1vi, naicy, 89y, 197ay (bottom panels; the lines are Poissonian fits to the gold
target data [129]. Bottom, left: the multiplicity distributioRy for clusters of sizé\ as a fucntion oN in bins of bond breaking
probability ppreak @nd excitation energf* for percolation (left) and the reaction 1 AGeV AC (right); lines are Poissonian
distributions calculated with the measuiéa) [153]. Top, right: the probability distributions of obtainimg clusters of sizeA

at the three temperatures indicated; lines are fits to a Poissonian distribution (Eq. (79) with the means given by the data [190].
Bottom, right: the probability distributions (histograms) and binomial fit (Eq. (75) dotted line) for the production of NTSF number
of clusters at increasing energies from low (upper left) to highest (lower right) for classical molecular dynamics calculations [206].

yields equations (42) and (44)) leads to
Mz O || ™" andZmax O €P. (80)

With techniques developed and tested on percolation lattices [84, 117] the location of the critical point in tegms of

and the values of the critical exponents were measured from the exclusive cluster yields. Figure 23 shows the results
of that analysis and Table 2 shows the critical exponent values from several different reactions. The similarity between
the exponent values extracted from nuclear reactions and the valuesioftBdsing universality class is striking.

A variety of critiques of this analysis were discussed [96, 97, 98, 113] concerning the effects of mixing events of
different temperatures by binning in multiplicity and the effects of including clusters produced in the collision in the
analysis of clusters yields assumed to arise from an equilibrated source. Many of these criticisms were addressed
in another analysis of this reaction with higher statistics which excluded clusters arising from the collision from
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exponent values determined from clusters produced in the reaction 1 AGe¥@and ford = 3 percolationd = 3 Ising and

mean field[85], see plot for legend.

consideration and studied the effects of binning percolation calculations in terms of cluster multiplicity [156]. In
that work it was seem that the clusters produced in the initial collision had little effect on the extracted exponent
values and that accurate critical exponents could be determined from lattices with as few as 216 sites when using
cluster multiplicity as the control parameter. That work also stated the physical picture of cluster production from an
equilibrated system [156]:

Immediately following the collision, the gold projectile remnant is in an excited state with fewer than 197
nucleons. The excited remnant cools and expands and may evolve to the neighborhood of the critical point
in the temperature-density plane, where clusters condense from a high temperature low density vapor of
nucleons.

This physical picture and the analysis above raises several questions (beyond the fundamental question about how the
system comes to equilibrium which has long been assumed to be the case [3, 4]). For instance, the simple power
laws in Eqg. (80) are valid so long as the chemical potential of the liquid is equal to the chemical potential of the
vapor, i.e. the system is at coexistenag: = 0. Is there any evidence that the system is at coexistence? Where in
pressure-temperature-density space is the system when the cluster’s condence [124]? What is the meaning of density
or pressure of a vapor which is not enclosed by any container? What are the effects of the nuclear nature of the
system? Not only is there a cost in surface energy associated with the formation of a nuclear cluster (as shown in
Fisher’s theory), there is a cost in Coulomb energy, a cost in asymmetry energy, pair energy and so on. Whatever
the answer to these questions, other types of analyses and various experiments measured similar exponent values
[138, 169, 170, 175, 184, 185, 181, 204].

Another computational model that was used to study the phenomena of nuclear cluster formation was based on
classical molecular dynamics attempted to study many of the questions above [60, 65, 68, 74, 86, 87, 93, 91, 103, 105,
112,116,118, 130, 135, 144, 168,172,174, 177, 178, 206].

Some calculations [60, 65, 68, 91, 105, 116, 118, 130, 135, 168, 172, 174, 177, 178, 206] were done either with a
Lennard-Jones potential [2, 16, 21, 22] (modified or otherwise)

V(r) = 4E {(ro)”_ (ro)e} (81)

r r

wherer is the distance between two particles &i$ the maximum depth of the potential wellrat 21/rg; for r < rg
V (r) — +oo (rg is the radius of the infinitely hard core) and fox> ro V (r) — 0~ (the long range attraction). Other
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a typical evaporation procesg; = 4 shows the production of clusters of all sizes; dpd= 7.0 shows a rapid expansion which

may lead to instabilities and the formation of vapor clusters [118]. Right: the trajectory of the system in temperature-density space:
from top to bottom the evolution of Agg, Arsgg and Arsgg; solid curves indicate coexistence (CE), the isothermal spinodal (ITS)

and the adiabatic spinodal (AS) for an infinite system. For all systems the temperature decreases with increasing time. The density
shown for the trajectories is the central density of the largest cluster [118].

calculations [74, 86, 87, 93, 103, 112, 144] were done using the Yukawa potential [10] (modified or otherwise)

e Mor e Mo cutoff
Vin(r <reuof) = Vo S —
r I'cutoff
e Mrf @ Hrfeutoff e Mar @ Malcutoff
Vip(r <Tfeutoff) = Vr ( -— | —Va B —
r I'cutoff r I cutoff
Van(r > feutof) = Vnp(r > Feutoff) =0 (82)

whereVp, V; andV; set the scale of the potentials apgl y, and u; give the range of the force. Figure 24 shows
examples of the potentials used in various calculations. In general these efforts examined the clusters that were
produced from systems with a few hundred particles enclosed in a container with periodic boundary conditions and/or
a volume that was much larger than the volume taken up by the particles. Some calculations were performed by
starting from an equilibrated drop of a few hundred constituents at a given temperature [60, 65, 87, 91, 93, 103, 105,
116, 118, 116, 135, 144, 168, 172, 177, 178, 206] while others started from two drops both near zero temperature, but
which are excited through collisions [68, 74, 86, 112, 174].
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FIGURE 26. Left: The solid line shows the (binding) energy per particle of drops from a classical molecular dynamics calculation
at low temperatures; the dash-dot line shows a fit with to the equation (and fit parameters) shown in the figure; and the dashed line
shows the least bound particle in the drop [174]. Middle: cluster mass distributions for classical molecular dynamics calculations
of 100 particles; dots show the results of the calculations and solid lines show a fit to Eq. (66) [93]. Right: top: results from the
primary cluster distributions for the (a) cluster mass yield at an input temperature which gives the best fit to a power law (the
line shows the fit of a power law with the result= 2.18+ 0.03), (b) location of the peak iA-sized cluster production (the line

shows the fit of a power law with the resuit= 0.51+0.15), (c) size of the largest cluster (the line shows the fit of a power law
with the result = 0.29+ 0.08)and (d) peaking behavior of the second moment of the cluster distribution (the line shows the fit
of a power law with the resulg = 0.77+ 0.25); bottom: the same as the top but for the asymptotic time cluster distribution (here
7=2.18+0.03,0 =0.64+0.18, = 0.284+0.13 andy = 0.72+ 0.33). Both the primary and asymptotic cluster yields give the
same critical exponent values which are (expectjaimilar to thed = 3 Ising values shown in Table 2 [178].

In general it was found the classical molecular dymanics calculations could reproduce, in quality, several features
associated with experimentally measured clusters such as: the liquid-drop behavior of the binding energy [65, 174];
cluster yields (e.g. those shown in figures 13 and 14) which were also well described by Fisher’s theory and Eqg. (16)
[68, 86, 87, 91, 93, 103, 105, 112, 116, 118, 135, 144, 177, 178, 206]; the Campi plots (shown in Fig. 18) [93, 112,
118, 168]; peaks in the moments of the cluster distributions and the associated critical exponents [178]; reducibility
[172, 206]; and thermal scaling and the associated barrier dependence on cluster size [172]. Figure 26 shows some of
these results.

While the features of the cluster distributions exhibited thermal and seemingly critical features, estimates of the
trajectories (temperature and density as functions of Tirtt¢ andp (t)) of the systems studied rarely passed close to
the liquid-vapor critical point [91]. For example, see the trajectories shown in Fig. 25 which shows that none of the
trajectories considered pass near the liquid vapor critical point (while all trajectories pass near the adiabatic critical
point) yet forT;, ~ 4 critical behavior is reported [118].

One possible solution to this paradox is that the critical point of a system depends on the size of the system
[23, 35, 36, 76, 89, 94]

Te(e0) = Te(L) DL and pe (e0) — pe (L) O L@V, (83)

However, the size referred to in the scaling equations aligus the size of the volume in which the fluid is enclosed

[94] and not the number of particles inside the volume. Thus, one may not see any such finite size scaling of the critical
point if even just a few hundred particles are enclosed in a sufficiently large volume, or they enclosed in a volume with
periodic boundary conditions (which lessens the effects of finite size [23, 35, 36]) or if they are not enclosed in any
volume at all.

Another possibility is that the temperatures and densities used to construct trajectories as shown in Fig. 25 are not
the pertinent quantities. Generally, the temperatures and densities used to construct such trajectories are associated
with the central region of the largest cluster [60, 65, 68, 74, 86, 87, 91, 93, 118]. For instance, at low temperatures
cluster production should be predominantly a surface phenomena, thus the temperature and density at the core of the
evaporating cluster are less important than the conditions at or near the surface. In any case, it is clear that the clusters



produced in classical molecular dynamical calculations appear thermal in nature, however it is still an open question
how the dynamics leads to this result.
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