Nuclear Stopping from the Fermi Energy up to a few GeV/nucleon

* a non-exhaustive review based on FOPI and INDRA data

- * restricted to symmetric systems in central collisions
- \ast based on a study of the isotropy ratio R_{iso} and the velocity-dependent

charge density: dZ/dV

FOPI data: W. Reisdorf et al (accepted by PRL: nucl-ex/0404037) INDRA data: C. Escano et al (submitted)

Variables used to study stopping power

FOPI

FOPI data

- * stopping goes through a maximum around 400 MeV/u
- * approximate scaling law A^{1/3}
- * strong correlation between flow and stopping (not discussed here)
- * decrease of stopping above 400 MeV/u --> softening of the EOS
- * decrease below 400 MeV/u ---> influence of
- "Pauli blocked" in-medium nucleon nucleon collisions

INDRA data: selection of central collisions based on $dZ/dV_{//}$

* select charged particles with positive cm velocities to avoid problems with detection thresholds

* select events for which the total charge is larger than 90 percent of \mathbf{Z}_{proj}

* select central events on the basis of a multipicity cut (''scalar '' cut)

--> minimum bias selector because R_{iso} and $dZ/dV_{//}$ are ''vector'' quantities

* beyond M_{cen} (here 37) , dZ/dV_{red} do not change anymore --> central collisions

* geometrical aspects of the reaction mechanism

* R_{iso} reaches an asymptotic value as a function of M_{tot}
* fluctuations of R_{iso} are (partly) due to finite number effect

Au+Au 80 MeV/nucleon

Systematics of INDRA

Comparaison with FOPI: Vartl similar to R_{iso} but not rigourously equal * Vartl= .75 for Xe+Sn at 400 MeV/u * problem with Au+Au: Vartl=.6 at 100 MeV/u ---> work in progress to understand

Summary

* transparency is a general trend in central symmetric nuclear collisions

- observed by INDRA and FOPI with similar observables
- 'stopping' minimum close to E_{fermi} , maximum around 400 Mev/nucleon

and then decreases

- 'stopping' scales roughly with A^{1/3} ---> rôle of in-medium nucleon-nucleon collisions

- reasonnable agreement between INDRA and FOPI data

- detailed comparison (Vartl vs R_{iso}) in progress

* tranparency is the key process to understand nuclear fragmentation in central collisions as a fast 'transient' mechanism

* these results constitute strong tests of the microscopic transport models - mean field vs nucleon-nucleon collisions, medium effects, MDI's, softening of the EOS