

FLORIDA STATE UNIVERSITY

Nuclear Structure of Actinides with (t,p), the FSU Super-Enge Split-Pole Spectrograph and its ancillary detectors

Dr. Mark-Christoph Spieker (FSU) TRITON 2024, Department of Physics, Florida State University

Experimental Setup at FSU

The Super-Enge Split-Pole Spectrograph @ FSU

Particle identification to choose reaction of interest.

... measured with plastic scintillator

The Super-Enge Split-Pole Spectrograph @ FSU

Position resolution to identify excited states.

Ionization chamber with two anode wires, each inductively connected to pick-up pads, which are connected to delay-line chips.

[Focal-plane figures courtesy of C. Benetti (FSU alumni; S. Tabor)]

We keep our focal plane detector position fixed and calculate the real focal plane position offline.

FSU Experimental Setup at

Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS

Coincidence timing between $CeBr_3 \gamma$ -ray detectors and focal-plane scintillator.

PID eliminates prompt events resulting from other reactions. To eliminate random background, further timing gates are needed.

Coincidence timing between CeBr₃ γ-ray detectors and focal-plane scintillator.

PID eliminates prompt events resulting from other reactions. To eliminate random background, further timing gates are needed.

10

Coincidence timing between CeBr₃ γ-ray detectors and focal-plane scintillator.

PID eliminates prompt events resulting from other reactions. To eliminate random background, further timing gates are needed.

Coincident γ -ray detection with the CeBrA demonstrator at SE-SPS

Coincident γ -ray detection with the CeBrA demonstrator at SE-SPS

Riley [Ursinus College]

collaboration with L.A

Е

at Fox Lab

REU

Measured during 2023

Particle- γ coincidence matrix for selecting the excitation and decay of specific excited

13

Angular correlations

14

ARUNA

Coincident γ -ray detection with the CeBrA demonstrator at SE-SPS

Particle- γ angular correlations for spin-parity assignments and determination of multipole mixing ratios. ${}^{52}Cr(d,p\gamma){}^{53}Cr$

Coincident γ -ray detection with the CeBrA demonstrator at SE-SPS

Nuclear level lifetimes

15

Time difference between γ -ray detection with CeBrA and particle detection with SE-SPS to determine level lifetimes. ${}^{34}S(d,p\gamma){}^{35}S$

College] rsinus Riley University Richard [Ohio with collaboration Ŕ and

GEANT4 simulation of CeBr₃ detectors

- FSU undergraduate student Scott Baker working on simulation of our CeBr₃ detectors using GEANT4 as part of his honors thesis.
- \rightarrow Benchmark of simulation against data measured with standard calibration sources.

2" x 2" Detector Efficiencies

Spectra from source commissioning with deuterium beam $-(d,^{3}He)$ and (d,t)

Only published spectrum from J. L. Yntema and G. R. Satchler, Phys. Rev. 134, B976 (1964) measured at scattering angle of 20°.

Spectra from source commissioning with deuterium beam – (d,³He) and (d,t)

Spectra from source commissioning with deuterium beam – (d,³He) and (d,t)

[A. Jamshidi and W. P. Alford, Phys. Rev. C 8, 1796 (1973)]

47Ti*(0.159

435

F2-6.039

540

Silicon Array for Branching Ratio Experiments (SABRE)

- In collaboration with LSU (C. Deibel)
- 5 Micron Semiconductor Ltd. MMM Silicon strip detectors with thin deadlayers in lampshade configuration.
- Fully digital data acquisition based on CAEN V1725 and V1730 digitizers and DPP-PHA firmware.
- Array primarily used for studying the decay of unbound particle resonances relevant for Nuclear Astrophysics.
- Decay-particle-particle angular correlations with SABRE and SE-SPS can be measured to test wave functions in great detail.
- Exemplary science cases: Synthesis of ²⁶Al, isotope production in classical novae, super-radiance in ¹³C.

Reference: E.C. Good et al., Nuclear Instruments and Methods in Physics Research, A 1003, 165299 (2021)

Future detector developments

- Development of conversion electron spectrometer in Mini-Orange Design using PIPS detectors
- Fission detector (cube design) using silicon photodiodes similar to SCARY design used at WNSL.

[WNSL/SCARY: C.W. Beausang et al., Nucl. Instr. Meth. A 452, 431 (2000)]

FLORIDA STATE UNIVERSITY

A very brief review of what we learned from (p,t) and why (t,p) might provide additional insights...

Phenomena influencing structure of low-lying excited states

Covariant density functional theory

• DFT constrained *sdf* IBM-1 PES

• HFB+Gogny(D1M)+GCM

Octupole deformation in light actinides

Static octupole deformation in light actinides?

[Figures: S.E. Agbemava *et al.*, PRC **93**, 044304 (2016); K. Nomura *et al.*, PRC **89**, 024312 (2014); L.M. Robledo and P.A. Butler, PRC **88**, 051302(R) (2013)] [Similar conclusions: E. Olsen *et al.*, JoP: Conference Series **402**, 012034 (2012)]

Octupole excitations in heavier actinides

132 134 136 138 140 142 144 146 148 Neutron number

- Second octupole minimum exists around N ~ 146
- No significant gain in binding energy due to octupole correlations predicted by theory
- → No static octupole deformation in nuclear ground state of more neutron-rich actinides

Octupole excitations in actinides

Appearance of octupole deformation at high spins? (... stabilization of octupole shape with rotation?)

- $B(E3; 3_1^- \to 0_1^+) = 17(3)$ W. u. in ²⁴⁰Pu
- No alternating-parity band at low spins
- Instead build-up of alternating-parity band at $J \ge 20$
- Induced intrinsic dipole moment $D_0 = 0.2$ efm (e.g., $D_0 = 0.2 - 0.3$ efm in light, octupoledeformed Th isotopes)

```
[I. Wiedenhöver et al., PRL 83, 2143 (1999)]
```

→ Second-order phase transition to an octupoledeformed shape at high spins

[R.V. Jolos and P. von Brentano, PRC 84, 024312 (2011); R.V. Jolos et al., PRC 86, 024319 (2012)]

[Figure: X. Wang et al., PRL 102, 122501 (2009)]

Octupole excitations in actinides

Band 3 ($K^{\pi} = 0^+_2$) was proposed to be either of

double-octupole phonon character \rightarrow

[X. Wang et al., PRL 102, 122501 (2009); R.V. Jolos et al., PRC 88, 034306 (2013)]

or

to be lowest-lying α -cluster excitation in \rightarrow mass-asymmetry coordinate

[T.M. Shneidman et al., PRC 92, 034302 (2015)]

Problem: Both approaches can describe the properties of the ground-state, $K^{\pi} = 0^{-}_{1}$ and $K^{\pi} = 0^{+}_{2}$ band.

(relative motion between clusters was previously missing in order to describe B(E3) in 224 Ra)

Introduction

Uniformly strong (*p*,*t*) population of first-excited 0^+ state \rightarrow Collective excitation? Pairing vibration? Pairing isomer?

[J.V. Maher et al., PRL 25, 302 (1970); J.V. Maher et al., PRC 5, 1380 (1972); A.M. Friedman et al., PRC 9, 760 (1974)]

29

Experimental data from Q3D campaign

(... may it rest in peace, wherever it is now.)

We decided to revisit some (p,t) measurements a while ago...

^{230,228}Th, ²³²U: H.-F. Wirth *et al.*, PRC **60**, 044310 (2004)
²³⁰Th: A.I. Levon *et al.*, PRC **79**, 014318 (2009)
²²⁸Th: A.I. Levon *et al.*, PRC **88**, 014310 (2013)
²⁴⁰Pu: M. Spieker *et al.*, PRC **88**, 041303(R) (2013)
²³²U: A.I. Levon *et al.*, PRC **92**, 064319 (2015)
²⁴⁰Pu: M. Spieker *et al.*, PRC **97**, 064319 (2018)

(p,t) reaction and the nature of the first excited 0⁺ state

Uniformly strong (*p*,*t*) population of first-excited 0^+ state \rightarrow Collective excitation? Pairing vibration? Pairing isomer?

[J.V. Maher et al., PRL 25, 302 (1970); J.V. Maher et al., PRC 5, 1380 (1972); A.M. Friedman et al., PRC 9, 760 (1974)]

What we thought (think?) we learned from (t,p) reactions...

The (t,p) reactions from 230,232 Th and 234,236,238 U were studied at 15-20 MeV bombarding energy. The known excited 0⁺ states in 232 Th, 236,238 U were not observed nor was any excited 0⁺ strength located in 234 Th or 234 U. The previously reported strong L = 0 (p,t) transitions in this region as well as the weak L = 0 (t,p) strengths reported here constitute a strong indication of the existence of quadrupole pairing correlations in deformed superfluid nuclei.

[R.F. Casten et al., PLB 40, 333 (1972); B.B. Back et al., NPA 217, 116 (1973)]

- Strong (p,t) and weak (t,p) cross section supported pairing isomer interpretation of 0⁺₂ states favored by Ragnarsson and Broglia.
 [I. Ragnarsson and R.A. Broglia, NPA 263, 315 (1976)]
- Strong population of 0⁺₂ in ²³⁹Pu(d,p)²⁴⁰Pu did already question pairing isomer interpretation. [A. Friedman and K. Katori, PRL 30, 102 (1973)]

How does the double octupole phonon structure fit into this story?

We learned that we are dealing with at least two different structures!

(*p*,*t*) observables

Nucleus	п	E_x [keV]	$R_{0_n^+/0_1^+}(5^\circ/25^\circ)$
²²⁸ Th	2	831.9	1.5
	3	938.7	2.5
²³⁰ Th	2	635.1	2.1
	3	1297.1	1.2
²³² U	2	691.4	2.1
	3	927.2	1.7
²⁴⁰ Pu	2	861.2	1.1
	3	1090.3	2.9

• γ-decay behavior [B(*E1*)/B(*E2*)]

Nucleus	п	E_x [keV]	$J^{\pi}_{f,E1}$	$J^{\pi}_{f,E2}$	$R_{E1/E2}$ [10 ⁻⁶ fm ⁻²]
²²⁴ Ra	2	916.4	1^{-}_{1}	2^{+}_{1}	pprox 0.2
²²⁶ Ra	2	824.6	1^{-}_{1}	-	a
²²⁸ Ra	2	721.2	$1^{\frac{1}{1}}$	2^{+}_{1}	2.7(4)
²²⁶ Th	2	805.2	$1^{\frac{1}{1}}_{1}$	1	a
²²⁸ Th	2	831.9	$1^{\frac{1}{1}}_{1}$	2^{+}_{1}	5.1(4)
230 Th	(3)	1297.1	$1^{\frac{1}{1}}_{1}$	2^{+}_{1}	0.71(4)
232 Th	(3)	1078.6	$1^{\frac{1}{1}}$	2^{+}_{1}	b
²³² U 4	3	927.3	$1^{\frac{1}{1}}$	2^{+}_{1}	44(7)
²³⁴ U	3	1044.5	$1^{\frac{1}{1}}_{1}$	2^{+}_{1}	3.9(3)
238 UZ	2	927.2	1	2^{+}_{1}	с
²³⁸ Pu	2	941.5	1^{-}_{1}	2^{+}_{1}	≤0.5
²⁴⁰ Pu	2	861.2	$1\frac{1}{1}$	2_1^{+}	13.7(3)

^aNo *E*2 transition observed.

^bNo γ -intensities measured.

^cAssignment based on $R_{E1/E2}$ of $J^{\pi} = 2^+$ band member.

[M. Spieker et al., PRC 97, 064319 (2018)]

The two states have different angular distributions and a very different γ-decay behavior! (probably "double-octupole" component mixes with "pairing" state)

Expectations in 60s/70s were that one should observe strongly excited 0^+ states at higher excitation energies. We could search for these states.

[Data and results: A.I. Levon et al., PRC 79, 014318 (2009); PRC 88, 014310 (2013); PRC 92, 064319 (2015); M. Spieker et al., PRC 97, 064319 (2018)]

A word of caution – Multistep contributions in deformed nuclei

In deformed nuclei, multistep contributions can be significant. (p,t) l = 0 transfer appears to be unaffected. We will need to see what happens in (t,p).

Back-Up

FSU Program

The John D. Fox Laboratory at Florida State University

Four main experimental programs:

- In-flight radioactive beams with RESOLUT
- High-resolution spectroscopy with Super-Enge Split-Pole Spectrograph (SE-SPS)
- CLARION-2 Clover γ-ray array (w. ORNL)
- Neutron detection with CATRiNA

CeBr₃ – An inorganic scintillator for γ-ray spectroscopy

- Similar emission spectrum to LaBr₃(Ce) scintillator, which are widely used in low-energy nuclear physics.
 - → Double emission band from lowest 5d level to the spin orbit split 4f ground state.
- Unlike LaBr₃(Ce), no intrinsic activity.
 - → Contaminants can be separated and no radioactive Ce isotope in natural Ce.
 - → Low background for spectroscopy applications between 0 and 3 MeV.
- Energy resolution is worse than for HPGe, but comparable to LaBr₃(Ce), i.e., ~ 4% at 662 keV.

$CeBr_3$ – An inorganic scintillator for γ -ray spectroscopy

- As for LaBr3(Ce), emission is fast.
 → Because of this fast signal decay, CeBr₃ can be operated at much higher rates than slower detector types as, e.g., HPGe.
 - → With suitable PMTs, CeBr₃ can be used for fast-timing applications, i.e., lifetime measurements of nuclear excited states.
- CeBr₃ is less prone to radiation damage by neutrons than HPGe and LaBr3(Ce).
 → Detectors can be used in "violent" environments; *e.g.*, light-ion induced reactions at spectrographs.

Digital data acquisition

- CAEN V1725S digitizers
 - DPP-PSD firmware
 - 14-bit resolution
 - 250 MS/s sampling rate
 - Clock: 20 ns (50 MHz)
 - Digital CFD provides subns resolution for timing.

Characterization of CeBr₃ detectors – Energy resolution

Characterization of CeBr₃ detectors – Gain stability close to magnetic field

Characterization of CeBr₃ detectors $-\gamma$ -ray detection efficiency

Coincident y-ray detection with the CeBrA demonstrator at SE-SPS

Select decay to specific final state with particle- γ coincidence matrix.

