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The Super-Enge Split-Pole Spectrograph @ FSU
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Direct reactions at the FSU SE-SPS [Selective population]
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Use direct reactions to selectively populate excited states.
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The Super-Enge Split-Pole Spectrograph @ FSU
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Protons
Deuterons

Particle identification to choose reaction of interest.
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… measured with plastic scintillator
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49Ti(d,p)50Ti
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The Super-Enge Split-Pole Spectrograph @ FSU
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𝐵𝐵𝜌𝜌 =
2𝑚𝑚𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘
𝑞𝑞

Position resolution to identify excited states.

Ionization chamber with two anode wires, each 
inductively connected to pick-up pads, which are 
connected to delay-line chips.

We keep our focal plane detector position fixed 
and calculate the real focal plane position offline.

[Focal-plane figures courtesy of C. Benetti (FSU alumni; S. Tabor)]
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The Super-Enge Split-Pole Spectrograph @ FSU
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Position resolution to identify excited states.

FWHM ~ 
30-60 keV

𝐽𝐽𝜋𝜋 = 1−

𝐽𝐽𝜋𝜋 = 1−

(ongoing analysis)

= 1 -  s t a t e s  o b s e r v e d  in  r e a l- p h o t o n  s c a t t e r in g  
o f f  4 8 ,5 0Ti a t  HIγ S@Du k e  Un iv e r s it y .
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The Super-Enge Split-Pole Spectrograph @ FSU
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Measure reaction yields at different scattering angles 
(angular distributions) and identify neutron 1p-1h 
components of the state’s wave function by 
comparison to theory.Rails

49Ti(d,p)50Ti(ongoing analysis)
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Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS

Combining reaction and decay selectivity to study the structure of excited states.

Target
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Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS
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Time difference [ns]

PID eliminates prompt events resulting from other reactions. 
To eliminate random background, further timing gates are 
needed.

True coincidences!

Coincidence timing between CeBr3 γ-ray 
detectors and focal-plane scintillator.
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Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS
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Coincidence timing between CeBr3 γ-ray 
detectors and focal-plane scintillator.

PID eliminates prompt events resulting from other reactions. 
To eliminate random background, further timing gates are 
needed.

(d,p)

(d,d’)

(d,t)
… and (d,α)



11

Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS
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Coincidence timing between CeBr3 γ-ray 
detectors and focal-plane scintillator.

PID eliminates prompt events resulting from other reactions. 
To eliminate random background, further timing gates are 
needed.

(d,p)

(d,d’)

(d,t)
… and (d,α)
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Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS
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Particle-γ coincidence matrix for selecting 
the excitation and decay of specific excited 
states. 49Ti(d,pγ)50Ti
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Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS
M

ea
su

re
d 

du
rin

g 
20

23
 R

EU
 a

t F
ox

 L
ab

52Cr(d,pγ)53Cr

Particle-γ coincidence matrix for selecting 
the excitation and decay of specific excited 
states.
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Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS
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Particle-γ angular correlations for spin-parity 
assignments and determination of multipole 
mixing ratios. 52Cr(d,pγ)53Cr
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Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS
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Time difference between γ-ray detection with 
CeBrA and particle detection with SE-SPS 
to determine level lifetimes.

34S(d,pγ)35S
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Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS
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!

Submitted MRI to NSF in collaboration with Ursinus 
College and Ohio University to build and use full 
CeBrA detector array at FSU (Oct. 2023) [~$750k]
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GEANT4 simulation of CeBr3 detectors
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 FSU undergraduate student Scott Baker 
working on simulation of our CeBr3 
detectors using GEANT4 as part of his 
honors thesis.

→ Benchmark of simulation against data 
measured with standard calibration 
sources.

Undergraduate Research



18

Spectra from source commissioning with deuterium beam – (d,3He) and (d,t)
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49Ti(d,3He)48Sc

Only published spectrum from  J. L. Yntema and G. R. Satchler, Phys. Rev. 134, 
B976 (1964) measured at scattering angle of 20°.

March 2024
∆Ω = 4.6 msr
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Spectra from source commissioning with deuterium beam – (d,3He) and (d,t)
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10°

[Angular distributions: H. Ohnuma and J. L. Yntema, Phys. Rev. C 2, 1725 (1970)]

𝑙𝑙 = 0 + 2

𝑙𝑙 = 3
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Spectra from source commissioning with deuterium beam – (d,3He) and (d,t)
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Silicon Array for Branching Ratio Experiments (SABRE)

 In collaboration with LSU (C. Deibel)
 5 Micron Semiconductor Ltd. MMM 

Silicon strip detectors with thin 
deadlayers in lampshade configuration.

 Fully digital data acquisition based on 
CAEN V1725 and V1730 digitizers and 
DPP-PHA firmware.

 Array primarily used for studying the 
decay of unbound particle resonances 
relevant for Nuclear Astrophysics.

 Decay-particle-particle angular 
correlations with SABRE and SE-SPS 
can be measured to test wave functions 
in great detail.

 Exemplary science cases: Synthesis of 
26Al, isotope production in classical 
novae, super-radiance in 13C.

Reference: E.C. Good et al., Nuclear Instruments and Methods in Physics Research, A 1003, 165299 (2021)
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Future detector developments

 Development of conversion 
electron spectrometer in Mini-
Orange Design using PIPS 
detectors

 Fission detector (cube design) 
using silicon photodiodes similar 
to SCARY design used at 
WNSL.

[WNSL/SCARY: C.W. Beausang et al., Nucl. Instr. Meth. A 452, 431 (2000)]
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A very brief review of what we learned 
from (p,t) and why (t,p) might provide 
additional insights…



Phenomena influencing structure of low-lying excited states

Octupole Correlations (∆𝒋𝒋 = ∆𝒍𝒍 = 𝟑𝟑)
 Octupole deformation and excitations in the actinides (ground 

state and excited states)

α Clustering
 An alternative way to cause reflection asymmetry in the actinides

Pairing
 Pairing probed in (p,t) and (t,p) reactions (neutrons only; ∆𝑠𝑠 = 0)

proton

neutron

[M. Spieker et al., PRC 97, 064319 (2018)]
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Octupole deformation in light actinides
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Static octupole deformation in light actinides?

[Figures: S.E. Agbemava et al., PRC 93, 044304 (2016); K. Nomura et al., PRC 89, 
024312 (2014); L.M. Robledo and P.A. Butler, PRC 88, 051302(R) (2013)]
[Similar conclusions: E. Olsen et al.,  JoP: Conference Series 402, 012034 (2012)]

 Covariant density functional theory

 DFT constrained sdf IBM-1 PES

 HFB+Gogny(D1M)+GCM

Appearance of octupole 
deformation rather 
localized at N ∼ 136
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Octupole excitations in heavier actinides
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?Experiment
(ENSDF data)

 Second octupole minimum exists around N ∼ 146
 No significant gain in binding energy due to 

octupole correlations predicted by theory

[Figure: S.E. Agbemava et al., PRC 93, 044304 (2016)]

→ No static octupole deformation in nuclear 
ground state of more neutron-rich actinides
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Octupole excitations in actinides
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240Pu
[Figure: X. Wang et al., PRL 102, 122501 (2009)]

Appearance of octupole deformation at high spins?
(… stabilization of octupole shape with rotation?)

 𝐵𝐵 𝐸𝐸𝐸; 31− → 01+ = 17 3  W. u. in 240Pu
 No alternating-parity band at low spins
 Instead build-up of alternating-parity band at 𝐽𝐽 ≥ 20
 Induced intrinsic dipole moment 𝐷𝐷0 = 0.2 efm
 (e.g., 𝐷𝐷0 = 0.2 − 0.3 efm in light, octupole-

deformed Th isotopes)
[I. Wiedenhöver et al., PRL 83, 2143 (1999)]

→ Second-order phase transition to an octupole-
deformed shape at high spins

[R.V. Jolos and P. von Brentano, PRC 84, 024312 (2011); R.V. Jolos et al., PRC 86, 024319 (2012)]

?
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Octupole excitations in actinides
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240Pu
[Figure: X. Wang et al., PRL 102, 122501 (2009)]

?
 Band 3 (𝑲𝑲𝝅𝝅 = 𝟎𝟎𝟐𝟐+) was proposed to be either of

 → double-octupole phonon character
 
 or
 → to be lowest-lying α-cluster excitation in 

mass-asymmetry coordinate

[X. Wang et al., PRL 102, 122501 (2009); R.V. Jolos et al., PRC 88, 034306 (2013)]

[T.M. Shneidman et al., PRC 92, 034302 (2015)]

Problem:
Both approaches can describe the properties of 
the ground-state, 𝐾𝐾𝜋𝜋 = 01− and 𝐾𝐾𝜋𝜋 = 02+ band.

(relative motion between clusters was previously missing in order to 
describe B(E3) in 224Ra)
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(p,t) reaction and the nature of the first excited 0+ state
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[J.V. Maher et al., PRL 25, 302 (1970); J.V. Maher et al., PRC 5, 1380 (1972); A.M. Friedman et al., PRC 9, 760 (1974)]

Uniformly strong (p,t) population of first-excited 0+ state
→ Collective excitation? Pairing vibration? Pairing isomer?

24
0 P

u
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Experimental data from Q3D campaign
…
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230,228Th, 232U: H.-F. Wirth et al., PRC 60, 044310 (2004)
230Th: A.I. Levon et al.,  PRC 79, 014318 (2009)
228Th: A.I. Levon et al., PRC 88, 014310 (2013) 
240Pu: M. Spieker et al., PRC 88, 041303(R) (2013)
232U: A.I. Levon et al., PRC 92, 064319 (2015) 
240Pu: M. Spieker et al., PRC 97, 064319 (2018)

(… may it rest in peace, wherever it is now.)
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(p,t) reaction and the nature of the first excited 0+ state
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[J.V. Maher et al., PRL 25, 302 (1970); J.V. Maher et al., PRC 5, 1380 (1972); A.M. Friedman et al., PRC 9, 760 (1974)]

Uniformly strong (p,t) population of first-excited 0+ state
→ Collective excitation? Pairing vibration? Pairing isomer?

24 %

19 %

19 %
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What we thought (think?) we learned from (t,p) reactions…
…

 a
nd
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 to
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m
ix [R.F. Casten et al., PLB 40, 333 (1972); B.B. Back et al., NPA 217, 116 (1973)]

 Strong (p,t) and weak (t,p) cross section 
supported pairing isomer interpretation of 02+ 
states favored by Ragnarsson and Broglia.

 Strong population of 02+ in 239Pu(d,p)240Pu 
did already question pairing isomer 
interpretation.

[I. Ragnarsson and R.A. Broglia, NPA 263, 315 (1976)]

[A. Friedman and K. Katori, PRL 30, 102 (1973)]

How does the double octupole phonon structure 
fit into this story? 
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We learned that we are dealing with at least two different structures!
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 (p,t) observables  γ-decay behavior [B(E1)/B(E2)]

The two states have different angular distributions and a very different γ-decay 
behavior! (probably “double-octupole” component mixes with “pairing” state)

N
=1

40
,1

42

[M. Spieker et al., PRC 97, 064319 (2018)]
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Data for excited 0+ states from Q3D campaign

Results:


𝜎𝜎 02+

𝜎𝜎 01+
= 18 − 25 % 

confirmed
 ∑𝜎𝜎(0𝑖𝑖+)/𝜎𝜎 01+  

jumps at ~ 2∆𝑛𝑛
 ∆𝐸𝐸 02+, 03+  variation
 ∑𝜎𝜎(0𝑖𝑖+)/𝜎𝜎 01+  

comparable

[Data and results: A.I. Levon et al.,  PRC 79, 014318 (2009); PRC 88, 014310 (2013); PRC 92, 064319 (2015); M. Spieker et al., PRC 97, 064319 (2018)]

Expectations in 60s/70s were that one should observe strongly excited 0+ states at 
higher excitation energies. We could search for these states.
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A word of caution – Multistep contributions in deformed nuclei

 Direct transfer: (𝑝𝑝, 𝑡𝑡)
 Inelastic transfer:
 (𝑝𝑝, 𝑝𝑝’)  → (𝑝𝑝, 𝑡𝑡) → (𝑡𝑡, 𝑡𝑡′)

In deformed nuclei, multistep contributions can be significant. (p,t) 𝑙𝑙 = 0 transfer 
appears to be unaffected. We will need to see what happens in (t,p).

[M. Spieker et al., PRC 97, 064319 (2018)]
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The John D. Fox Laboratory at Florida State University
Th
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LINAC
(12 SC 𝛽𝛽 = 0.1 ATLAS resonators) 

TR1

TR2

TR1:
CATRiNA
ENCORE

TR2:
RESOLUT
ANASEN
ENCORE
SE-SPS
CLARION-2
CeBrA

Four main experimental programs:
 In-flight radioactive beams with RESOLUT 
 High-resolution spectroscopy with Super-

Enge Split-Pole Spectrograph (SE-SPS)
 CLARION-2 Clover γ-ray array (w. ORNL)
 Neutron detection with CATRiNA

9-MV Tandem + 8-MV LINAC
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CeBr3 – An inorganic scintillator for γ-ray spectroscopy

 Similar emission spectrum to LaBr3(Ce) 
scintillator, which are widely used in low-energy 
nuclear physics.

 → Double emission band from lowest 5d level 
to the spin orbit split 4f ground state.

 Unlike LaBr3(Ce), no intrinsic activity.
 → Contaminants can be separated and no 

radioactive Ce isotope in natural Ce.
 → Low background for spectroscopy 

applications between 0 and 3 MeV.

 Energy resolution is worse than for HPGe, but 
comparable to LaBr3(Ce), i.e., ~ 4% at 662 keV.

[F.G.A. Quarati et al., NIM A 729, 596 (2013)] 
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CeBr3 – An inorganic scintillator for γ-ray spectroscopy

 As for LaBr3(Ce), emission is fast.
 → Because of this fast signal decay, CeBr3 can 

be operated at much higher rates than slower 
detector types as, e.g., HPGe.

 → With suitable PMTs, CeBr3 can be used for 
fast-timing applications, i.e., lifetime 
measurements of nuclear excited states.

 CeBr3 is less prone to radiation damage by 
neutrons than HPGe and LaBr3(Ce).

 → Detectors can be used in “violent” 
environments; e.g., light-ion induced 
reactions at spectrographs.

[A. Conley, B. Kelly, MS, et al., NIM A 1058, 168827 (2024)]
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Digital data acquisition

 CAEN V1725S digitizers
– DPP-PSD firmware
– 14-bit resolution
– 250 MS/s sampling rate
– Clock: 20 ns (50 MHz)
– Digital CFD provides sub-

ns resolution for timing.

[Also see, e.g., C.J. Prokop et al., NIM A 792, 81 (2015) for fast-timing with XIA digitizers and digital CFD algorithms]
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Characterization of CeBr3 detectors – Energy resolution
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Characterization of CeBr3 detectors – Gain stability close to magnetic field
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Characterization of CeBr3 detectors – γ-ray detection efficiency
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Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS
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Select decay to specific final state with particle-γ coincidence matrix.

61Ni(d,pγ)62Ni
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