

A.B. McIntosh Texas A&M University Cyclotron Institute

Triton Beam Workshop, March 2024, Tallahassee

TEXAS A&M UNIVERSITY Cyclotron Institute

Austin Abbott

Maxwell Sorensen Alan McIntosh

Grigory Potel Andrea Richard

Sebastian Regener

Arthur Alvarez

Yennello Research Group

CENTER FOR **E**XCELLENCE IN NUCLEAR TRAINING AND UNIVERSITY-BASED RESEARCH

This research is possible thanks to the NNSA Grant #DE-NA0003841, and Department of Energy Grant #DE-FG02-93ER40773.

Why Photon Strength Function Matters: Radiative Neutron Capture

Detector Array for Photons, Protons, and Exotic Residues

one of two side-packs not shown for clarity

- (d,p) as (n,g) proxy
- Inverse kinematics \rightarrow RIB
- Highly segmented, high efficiency
 - Excitation energy
 - Gamma multiplicity
 - Total gamma energy
 - Individual gamma energies
- Photon strength function
- Improve neutron capture model predictions

Impacts:

Fundamental Nuclear Science Nuclear Astrophysics Stockpile Science Advanced Reactor Design

128 BaF2 crystals6.5 cm face-to-face20 cm long~800 lbs for all detectors

Alan McIntosh, Texas A&M University

Triton Beam Workshop, March 2024, Tallahassee

2021: 57Fe(d,pg)58Fe: BaF2, S3 2023: 54Fe(d,pg)55Fe: + ZDIC

Energy Resolution of DAPPER

$$\frac{W(E_{\gamma})}{E_{\gamma}} = \frac{\sqrt{aE_{\gamma}}}{E_{\gamma}}$$
$$\frac{W(E_{\gamma})}{E_{\gamma}} = \frac{\sqrt{a_0 + a_1E_{\gamma} + a_2E_{\gamma}^2}}{E_{\gamma}}$$

Nearly all detectors between 10-20% at 1 MeV.

Efficiency of DAPPER

Triton Beam Workshop, March 2024, Tallahassee

57Fe(d,pg) @ 7.5 MeV/u

Forward Method

Alan McIntosh, Texas A&M University

57Fe(d,pg)58Fe@ 7.5 MeV/u

Forward Method

Alan McIntosh, Texas A&M University

DAPPER

"unfolded" remove detector response

57Fe(d,pg)58Fe@ 7.5 MeV/u

Alan McIntosh, Texas A&M University

DAPPER

Triton Beam Workshop, March 2024, Tallahassee

Zero-degree ionization chamber

Collaboration with S. Pain (ORNL) et al. S. Pain, T.T. King, M. Grinder, S. Balakrishnan, A. Ratkiewicz, R. Ghimire IC of the GODDESS array

Unit Z separation > 5e5 pps dE-E technique

other <= 1% features slit-scattering stopping in wires pile-up combinations of these

TPC for DAPPER

Simulations in progress 10cm length x 10cm dia

- no fusion-evaporation background
- no target degradation
- higher density of deuterium
- improved E* resolution (energy loss and angle)

Measurements possible with DAPPER with triton beams may benefit from collaborations involving FSU devices

SPS – could measure protons at some angles

CeBrA – better resolution

DAPPER

weighs ~ 1/2 t less than 52" x 80" footprint

triton beams

Alan McIntosh, Texas A&M University

Triton Beam Workshop, March 2024, Tallahassee

Extend Isotopic Chains – Iron Example

59Fe is s-process branch60Fe is interestingly abundant

53Ni	54Ni	55Ni	56Ni	57Ni	58Ni	59Ni	60Ni	61Ni	62Ni	63Ni	64Ni	65Ni
52Co	53Co	54Co	55Co	56Co	57Co	58Co	59Co	60Co	61Co	62Co	63Co	64Co
51Fe	52Fe	53Fe	54Fe	55Fe	56Fe	57Fe	58Fe	59Fe	60Fe	61Fe	62Fe	63Fe
50Mn	51Mn	52Mn	53Mn	54Mn	55Mn	56Mn	57Mn	58Mn	59Mn	60Mn	61Mn	62Mn
49Cr	50Cr	51Cr	52Cr	53Cr	54Cr	55Cr	56Cr	57Cr	58Cr	59Cr	60Cr	61Cr

PSF measurements for 56Fe, 57Fe exist using (3He,4He) Analysis for PSF nearly done for 58Fe (DAPPER) using (d,p) (inverse kin) Data for PSF obtained for 55Fe (DAPPER) using (d,p) (inverse kin)

59Fe(d,p)60Fe with DAPPER + RIB (inverse kin)

58Fe(t,p)60Fe with DAPPER + triton beams (normal kin) 60Fe(t,p)62Fe with DAPPER + triton beams (normal kin) target activity only ~1 uCi 60Fe(p,p')60Fe with DAPPER

(t,p) cross sections are on the order of 1mb (TENDL2023)

Proxy for neutron capture on actinides

238U(t,p)240U

- 239U is produced by neutron capture on 238U in a neutron field
- 239U is short lived (23min) but has a significant (n,F) cross section (~14b) and significant (n,g) cross section (~20b)
- The photon strength function and level density of 240U would be useful to constrain
- Not accessible by (p,p'), (d,p)...

- U236 (23 My) builds up in reactors, neutron poison.
- Capture x-sect for 236U(n,g) desirable, may be sufficiently well known
- 235U(t,p), 236U(d,p), 236U(n,g),
 238U(h,a) all possible
- DAPPER can measure charged-particle reactions
- compare cross-section measurements to predictions using PSF; benchmark

90Sr

s-proc branch (89Sr: 51 d) Fission Prod (90Sr: 29 y)

84Zr	85Zr	86Zr	87Zr	88Zr	89Zr	90Zr	91Zr	92Zr	93Zr	94Zr
83Y	84Y	85Y	86Y	87Y	88Y	89Y	90Y	91Y	92Y	93Y
82Sr	83Sr	84Sr	85Sr	86Sr	87Sr	88Sr	89Sr	90Sr	91Sr	92Sr
81Rb	82Rb	83Rb	84Rb	85Rb	86Rb	87Rb	88Rb	89Rb	90Rb	91Rb
80Kr	81Kr	82Kr	83Kr	84Kr	85Kr	86Kr	87Kr	88Kr	89Kr	90Kr

88Sr(t,p)90Sr Not accessible by (p,p'), (d,p)...

135Xe strong reactor poison (Mb x-sect)

137Cs Fiss Prod

2Ba	133Ba	134Ba	135Ba	136Ba	137Ba	138Ba	139Ba	140Ba	141
ICs	132Cs	133Cs	134Cs	135Cs	136Cs	137Cs	138Cs	139Cs	140
)Xe	131Xe	132Xe	133Xe	134Xe	135Xe	136Xe	137Xe	138Xe	139
9I	1301	131I	1321	1331	134I	1351	136I	137I	13
3Te	129Te	130Te	131Te	132Te	133Te	134Te	135Te	136Te	137

134Xe(t,p)136Xe ~1mb 136Xe(p,p')136Xe tens of mb ice target! 135Cs(t,p)137Cs (4 mb TENDL2023) 133Cs(t,p)135Cs 135Cs(p,p')135Cs consider also (t,a) ~ 3 mb

169Tm(t,p)

168Yb	169Yb	170Yb	171Yb	172Yb	173Yb	174Yb	175Yb	176Yb
STABLE	32.018 d	STABLE	STABLE	STABLE	STABLE	STABLE	4.185 d	STABLE
0.123%	ε = 100.00%	2.982%	14.09%	21.68%	16.103%	32.026%	β [.] = 100.00%	12.996%
167Tm 9.25 d ε = 100.00%	168Tm 93.1 d ε = 99.99% β΄ = 0.01%	169Tm STABLE 100%	170Tm 128.6 d β ⁻ = 99.87% ε = 0.15%	171Tm 1.92 y β [·] = 100.00%	172Tm 63.6 h β [.] = 100.00%	173Tm 8.24 h β [.] = 100.00%	174Tm 5.4 min β [.] = 100.00%	175Tm 15.2 min β [.] = 100.00%
166Er	167Er	168Er	169Er	170Er	171Er	172Er	173Er	174Er
STABLE	STABLE	STABLE	9.392 d	STABLE	7.516 h	49.3 h	1.4 min	3.2 min
33.503%	22.869%	26.978%	β [.] = 100.00%	14.910%	β [.] = 100.00%	β [·] = 100.00%	β [.] = 100.00%	β [.] = 100.00%

Thulium is naturally monoisotopic (A=169). 170Tm (129d) and 171Tm (1.9y) Both are LLFP (170 from Pu, and 170&171 from U). Neutron capture on 170Tm would be useful to constrain.

169Tm(t,p)171Tm ~2 mb consider (t,a)

151Gd	152Gd	153Gd	154Gd	155Gd	156Gd	157Gd	158Gd	159Gd	160Gd	161Gd
150Eu	151Eu	152Eu	153Eu	154Eu	155Eu	156Eu	157Eu	158Eu	159Eu	160Eu
1495m	150Sm	151Sm	152Sm	153Sm	154Sm	155Sm	156Sm	157Sm	158Sm	159Sm

Eu has two only stable isotopes.

152,154,155Eu fission products (4-14y).

Neutron capture on all of these is interesting to constrain.

```
151Eu(t,p)153Eu; can compare to (p,p')
153Eu(t,p)155Eu
```

BACKGROUND REACTIONS

What about (t,pn) or (t,d) reactions when we want (t,p)?

Note that (t,pn) and (t,d) can be an ~10x higher than for (t,p).

- The (t,p) proton will be kinematically shifted compared to the (t,pn) and (t,d)
- The deuteron can be rejected by dE-E technique
- DAPPER measures E* from proton and E_Sum from gammas
 - (in addition to indiv gamma energies)
 - if rxn is (t,p) and we measure all gamma rays, E* = E_sum
 - if rxn is (t,p) and we measure less than all gamma rays, E* > E_sum: reject
 - if rxn is (t,pn) and we measure all gamma rays, E* < S_sum: reject
 - if rxn is (t,pn) and we measure less than all gamma rays
 - E* from proton is higher than reality
 - E_sum is lower than reality

+

triton beams

- DAPPER is highly efficient at measuring gamma rays
- Not just E_Sum, but individual energies and multiplicity
- Combined with silicon detectors to determine E* independently
- (Inverse kinematics short-lived nuclides)
- Charged particle reactions
 - (d,p), (p,p'), (t,p)
- Compare methods where possible
- Use (t,p) to extend reach
 - s-process branch points
 - reactor and stockpile science
 - extend isotopic chains
- Measure Photon Strength Functions
- Constrain predictive models of neutron capture

DAPPER

From Phil Adsley

(t,p) pair transfer

testing pairing prescriptions; gs->gs if pairing condensate description holds

shape co-existence away from closed shells e.g. Sm chain – spherical to deformed SPS well suited