Measurement of Asymmetry Parameters in ³⁷K Optical Pumping of Alkali Atoms

Benjamin Fenker

Spring 2013 Presented in partial fulfillment for the degree of Master of Science

Benjamin Fenker Measurement of Asymmetry Parameters in ³⁷K

Outline

Introduction

- What are angular correlations and why are they interesting?
- How do we measure them at TRINAT?
- Optical Pumping
 - How does it work?
 - How does my model improve our understanding?
 - What are the results from our December 2012 run?
- Outlook
 - Analysis of the completed A_{β} experiment
 - Description of the planned B_v measurement (my Ph.D. project)
 - Time-line

Motivation - Fundamental Symmetries

- In the standard model (SM), all fermions are left-handed.
 - Weak interaction is strictly Vector Axial-Vector or (V A)
 - Parity is conserved in strong and EM interactions but violated in weak ones?
- ► $SU(2)_L \otimes U(1)_Y \xrightarrow{?} SU(2)_R \otimes SU(2)_L \otimes U(1)_Y$
- Angular correlations in β -decay are sensitive to new physics
 - Measure these angular correlations experimentally
 - Compare the results to the SM predictions

Unpolarized

Motivation - Fundamental Symmetries

- ▶ In the standard model (SM), all fermions are left-handed.
 - Weak interaction is strictly Vector Axial-Vector or (V A)
 - Parity is conserved in strong and EM interactions but violated in weak ones?
- ► $SU(2)_L \otimes U(1)_Y \xrightarrow{?} SU(2)_R \otimes SU(2)_L \otimes U(1)_Y$
- Angular correlations in β -decay are sensitive to new physics
 - Measure these angular correlations experimentally
 - Compare the results to the SM predictions

Polarized

Polarized Decay Rate

The polarized decay rate is given as:

$$\frac{d^5 W}{dEd\Omega_e d\Omega_v} \sim 1 + P\left(A_\beta \frac{p_e}{E_e} \cos(\theta_e) + B_v \frac{p_v}{E_v} \cos(\theta_v)\right)$$

 A_{β} and B_{ν} are sensitive to right-handed currents through their dependencies on: $x = \frac{a_{RR} + a_{RL}}{a_{LL} + a_{LR}} \stackrel{SM}{\rightarrow} 0, \quad y = \frac{a_{RR} - a_{RL}}{a_{LL} - a_{LR}} \stackrel{SM}{\rightarrow} 0$ Polarized $A_{\beta} \stackrel{SM}{=} \frac{-2\lambda}{1+\lambda^2} \left(\sqrt{\frac{3}{5}} - \frac{\lambda}{5} \right) = -0.5702(6)$ 00 $B_{\rm v} \stackrel{\rm SM}{=} \frac{-2\lambda}{1+\lambda^2} \left(\sqrt{\frac{3}{5}} + \frac{\lambda}{5} \right) = -0.7692(15)$ $\lambda = \sqrt{2\frac{\mathcal{F}t}{ft} - 1} = \frac{g_A M_{GT}}{g_A M_{T}}$ = 0.5754(16)

Principle of the B_v measurement

$${}^{37}_{19}K \rightarrow {}^{37}_{18}Ar + \beta^+ + \nu$$

 $I^{\pi} = \frac{3}{2}^+ \rightarrow \frac{3}{2}^+$

- Mixed Fermi / Gamow-Teller Decay
- 98% branching ratio to ground state
- Isobaric analogue transition

Overview

- Magneto-Optical Trap (MOT)
 - Provides a cold, localized source of atoms
 - Shallow trap so products emerge unperturbed
 - New AC-MOT design allows for an improved duty cycle

Overview

- Magneto-Optical Trap (MOT)
- Optical Pumping Polarizes the Atoms
 - $\sigma^+ \sigma^-$ lasers drive biased random walk.
 - Have achieved P > 95% and expect improvements.
 - Measure P for the same atoms that are decaying.

Overview

- Magneto-Optical Trap (MOT)
- Optical Pumping Polarizes the Atoms
- Nuclear Detectors
 - DSSSD Position Sensitive Si Detectors
 - Scintillator Full energy of Positron
 - rMCP Measure the asymmetry of the recoiling Ar^+
 - eMCP Discern backgrounds in the experiment

Optical Pumping - Overview

- Any asymmetry is directly proportional to the nuclear polarization
 - Need high polarization. P > 95% has been reached in the past.
 - Must have a good model to measure the polarization precisely
- Laser light pumps the atoms to a fully polarized state
 - Nucleus is polarized through the hyperfine interaction
- Use the excited state population as a probe of the polarization
- This is atomic physics in a nuclear physics experiment that has particle physics goals.

Atomic Structure of Alkali Atoms

- Electronic configuration is [Ar]4s
- Treated as a single electron orbiting in a Coulomb potential

$$H = \underbrace{H_0}_{\text{Coulomb Spin-Orbit Hyperfine Zeeman Shifts}} + \underbrace{H_B}_{\text{Atomic Hamiltonian}} - \underbrace{\vec{ed} \cdot \vec{E}(t)}_{\text{Laser Term}}$$

$$H_{SO} = \vec{L} \cdot \vec{S} \text{ splits levels into states with } \vec{J} = \vec{L} + \vec{S} (\sim 1.6 \text{ THz})$$

- $H_{hf} = \vec{I} \cdot \vec{J}$ splits levels into states with $\vec{F} = \vec{J} + \vec{I}$ (~ 240*MHz*)
- $H_B = g_F \mu_B B_z F_z$ removes degeneracy of *F* states (~ 2.8*MHz*)

Stretched State

In ³⁷*K*:
$$\vec{l} = \frac{3}{2}$$
; $\vec{J} = \frac{1}{2}$; $\vec{F} = \vec{l} + \vec{J} = 1, 2$

- Stretched state has F = 2, $M_F = 2$ or equivalently $I_z = \frac{3}{2}$, $J_z = \frac{1}{2}$
- An atom in this state is dark to the laser light and is trapped
- This state corresponds to total atomic and nuclear polarization

Stretched State

In ³⁷*K*:
$$\vec{l} = \frac{3}{2}$$
; $\vec{J} = \frac{1}{2}$; $\vec{F} = \vec{l} + \vec{J} = 1, 2$

- Stretched state has F = 2, $M_F = 2$ or equivalently $I_z = \frac{3}{2}$, $J_z = \frac{1}{2}$
- An atom in this state is dark to the laser light and is trapped
- This state corresponds to total atomic and nuclear polarization

Optical Pumping Geometry

Classical Rate Equations

 $W_{e,g}$ = Laser induced transition rate γ_{spon} = Natural line-width of excited state $\mu_{e,g}$ = The transition strength between states *e*, *g*

- e = excited state
- g = ground state

Solve this set of $4(2l+1) \xrightarrow{37}{K} 16$ real coupled equations

Classical Rate Equations

 $W_{e,g}$ = Laser induced transition rate γ_{spon} = Natural line-width of excited state $\mu_{e,g}$ = The transition strength between states *e*, *g*

- e = excited state
- g = ground state

- Solve this set of $4(2l+1) \xrightarrow{3^{7}K} 16$ real coupled equations
- This classical theory neglects a number of quantum effects that can impact the degree of polarization.

Rate Equation Results - Basic Features

Benjamin Fenker Measurement of Asymmetry Parameters in ³⁷K

Coherent Population Trapping

- A precisely tuned laser traps atoms in coherent dark states
- Mimics the decaying of fluorescence without polarizing atoms
- Classical model cannot reproduce these effects

Optical Bloch Equations - Density Matrix

Diagonal elements correspond to the probability to be in a given state

$$\rho = \begin{pmatrix} \rho_{00} & \rho_{01} \cdots & \rho_{0n} \\ \rho_{10} & \rho_{11} \cdots & \rho_{1n} \\ \vdots & \ddots & \vdots \\ \rho_{n0} & \rho_{n1} \cdots & \rho_{nn} \end{pmatrix} \qquad \rho_{ij} = \rho_{ji}^{*}$$

Time evolution of the density matrix is given by Louiville's Equation:

$$\frac{d\rho}{dt} = \frac{1}{i\hbar} [H(t), \rho]$$

Optical Bloch Equations - Density Matrix

Off-diagonal elements represent the correlation between the states

$$\rho = \begin{pmatrix} \rho_{00} & \rho_{01} \cdots & \rho_{0n} \\ \rho_{10} & \rho_{11} \cdots & \rho_{1n} \\ \vdots & \ddots & \vdots \\ \rho_{n0} & \rho_{n1} \cdots & \rho_{nn} \end{pmatrix} \qquad \qquad \rho_{ij} = \rho_{ji}^*$$

Time evolution of the density matrix is given by Louiville's Equation:

$$\frac{d\rho}{dt} = \frac{1}{i\hbar} [H(t), \rho]$$

Where the Hamiltonian is the sum of atomic and laser terms:

Must now solve a set of

$$\frac{[4(2l+1)][4(2l+1)-1]}{2} \stackrel{{}_{37}}{\to} 120$$

complex differential equations.

- With 18 potentially variable input parameters
- Capable of modeling any alkali atom
- Check it out!

http://code.google.com/p/optical-bloch-equations

Comparison to rate equation

Most parameters give results that are close to the classical model

Comparison to rate equation

Parameters chosen to create CPT states show large differences These states are included in the model and avoided in the experiment

Coherent Population trapping in the density matrix model

Depolarizing mechanisms - Stokes Parameter s₃

- s₃ characterizes the degree of circular polarization
- s₀ is equivalent to the total power contained in the beam

$$\frac{s_3}{s_0} = \frac{I_+ - I_-}{I_+ + I_-}$$

• If $|s_3| < 1.0$ then atoms can be pumped out of the stretched state

Equilibrium is reached with not all atoms in the fully stretched state

Depolarizing mechanisms - Transverse magnetic field

 Magnetic field perpendicular to polarization axis causes precession

Atoms in the stretched state precess to other ground states $\vec{B} = B_x \hat{x} + B_z \hat{z}$

$$H_{\vec{B}} = -\vec{\mu} \cdot \vec{B}$$

$$H_{B_x} = g_F \mu_B B_x F_x = g_F \mu_B B_x \frac{F_+ + F_-}{2}$$

 B_x from apparatus: $B_x/B_z = 0.4\%$ Stray field from Earth, cyclotron, ... Mechanical misalignment: $\theta_{\hat{z}\hat{H}} \leq 2^\circ$

³⁷K data

- Too few counts to extract polarization from fluorescence data
- Can use recoil asymmetry to deduce polarization
- Use stable ⁴¹K to test model and compare to ³⁷K polarization

³⁷K data

- Too few counts to extract polarization from fluorescence data
- Can use recoil asymmetry to deduce polarization
- ► Use stable ⁴¹K to test model and compare to ³⁷K polarization

⁴¹K data

- Stable ⁴¹K has similar hyperfine structure to ³⁷K
- Can be produced and trapped off-line in large quantities!

Benjamin Fenker

Fitting details

- Aligned field fixed by trapped population scans: $B_z = 2.2 G$
- ► Relative detuning of lasers is fixed at $\Delta_{2\rightarrow 2} \Delta_{1\rightarrow 1} = 3.6 \text{ MHz}$
- Relative laser intensity is fixed at 2:1
- s₃ is assumed to be the same for both lasers
- Fitted parameters of interest are the
 - Laser intensity at the trap position
 - Background level
 - Residual fluorescence above background signals imperfect polarization
 - A depolarizing mechanism

Stokes parameter s_3 and transverse field B_x are > 99% correlated

Fits to the fluorescence

Benjamin Fenker Measurement of Asymmetry Parameters in ³⁷K

Fits to the fluorescence

Benjamin Fenker Measurement of Asymmetry Parameters in ³⁷K

Results

- Errors scaled so that χ²/NDF = 1.0 acknowledges underestimate of systematics
- Depolarizing mechanisms s_3 and B_x are > 99% correlated
- ⁴¹K data is fit and ³⁷K polarization is projected from the result

Fit results with $B_x = 0.0 G$

	S 3	P [⁴¹ K]	P [³⁷ K]
σ^{-}	0.9953(5)	0.9976(2)	0.9974(3)
σ^+	0.979(1)	0.9816(9)	0.9815(9)

Fit results with $B_x = 0.10$ G or $\theta_{\hat{B}\hat{z}} = 2^\circ$

	S 3	P [⁴¹ K]	P [³⁷ K]
σ^{-}	0.9959(5)	0.9967(2)	0.9966(3)
σ^+	0.979(1)	0.9807(9)	0.9806(9)

Results

Central value is chosen as average of two fits

Combined uncertainties for ⁴¹K

	σ^{-}	σ^+
Fitting	0.0003	0.0012
s ₃ vs.B _x	0.00045	0.0005
Sum	0.0005	0.0013

Combined fit results

$$\begin{array}{c|c} P \begin{bmatrix} ^{41}K \end{bmatrix} & P \begin{bmatrix} ^{37}K \end{bmatrix} \\ \hline \sigma^{-} & 0.9972(5) & 0.9970(6) \\ \sigma^{+} & 0.981(1) & 0.981(1) \end{array}$$

Conclusions

- New model of optical pumping has been developed and applied
 - Density matrix treats the atoms quantum mechanically
 - Coherent trapped populations are modeled in this picture
 - The transverse magnetic field is incorporated naturally
- Improved model allows for more accurate measure of polarization
- Photo-ions will have fewer systematics; allow for more reliable fits
- Future work
 - Establish better systematic uncertainties and improve fitting
 - Explore additional systematics including initial sub-level distribution
 - Use the improved model to recommend optimal optics settings

Status, Outlook

- Analysis of December 2012 run is continuing; results this year
- Will reconfigure apparatus to measure neutrino asymmetry B_v
 - Take data in 2014?
 - Ph.D in 2015?
- Completed all required and elective coursework
- Completed teaching requirement

Acknowledgments

- ► TAMU:
 - Dan Melconian, Spencer Behling, Praveen Shidling, Mike Mehlman, Yakup Boran
 - All the committee members
- Elsewhere:
 - TRIUMF: John Behr, Alexander Gorelov, Melissa Anholm, Scott Smales, Ioana Craiciu
 - Daniel Ashery (Tel Aviv)

- S. Gu et al., Opt. Comm. 220, 365 (2003)
- J.D. Jackson et al., Nuc. Phys. 4, 206 (1957)
- J.D. Jackson et al., Phys. Rev. 106, 517 (1957)
- D. Melconian et al., Phys. Lett. B 649, 5 (370)
- Y. Rosenbluh et al., Phys. Rev. A 52, 3216 (1995)
- F. Renzoni *et al.*, Phys. Rev. A 63, 1 (2001)
- P. Tremblay and C. Jacques, Phys. Rev. A 41, 4989 (1990)
- C.S. Wu et al., Phys. Rev. 105, 1413 (1957).

Polarized Decay Rate

The polarized decay rate is given as:

$$\frac{d^{5}W}{dEd\Omega_{e}d\Omega_{v}} \sim 1 + P\left(A_{\beta}\frac{p_{e}}{E_{e}}\cos(\theta_{e}) + B_{v}\frac{p_{v}}{E_{v}}\cos(\theta_{v})\right)$$

 A_β and B_ν are sensitive to right-handed currents through their dependencies on:

$$\begin{split} x &= \frac{a_{RR} + a_{RL}}{a_{LL} + a_{LR}} \stackrel{SM}{\to} 0, \ y &= \frac{a_{RR} - a_{RL}}{a_{LL} - a_{LR}} \stackrel{SM}{\to} 0\\ A_{\beta} &= \frac{-2\lambda}{(1+x^2) + \lambda^2 (1+y^2)} \left(\sqrt{\frac{3}{5}} (1-xy) - \frac{\lambda}{5} (1-y^2) \right)\\ B_{\nu} &= \frac{-2\lambda}{(1+x^2) + \lambda^2 (1+y^2)} \left(\sqrt{\frac{3}{5}} (1-xy) + \frac{\lambda}{5} (1-y^2) \right)\\ \lambda &= \sqrt{\left(2\frac{\mathcal{F}t}{ft} - 1 \right) \frac{1+x^2}{1+y^2}} \end{split}$$

All-optics magnetometry

Comparison to existing models

Measurements of s₃

$\sigma^+, B_x = 0.0 G$

$\sigma^+, B_x = 0.095 G$

σ^- , $B_x = 0.0 G$

$\sigma^{-}, B_{x} = 0.095 G$

