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1 Background

1.1 Probability distribution functions

Continuous distributions Consider a repeatable experiment where the outcome is described
by one continuous variable, x. The sample space spans all possible values that x can take. If one
asks what the probability of observing a value within the interval [x, x + dx], then the answer is
given by the “probability distribution function” (p.d.f.), f(x). I.e.:

Probability that x observed in interval [x, x+ dx] = f(x)dx. (1)

Another way to interpret this (the frequentist approach) is to say that f(x)dx is the fraction of times
that an observation is found between x and x+ dx, in the limit that the number of observations is
very large.

The p.d.f. is normalized such that the total probability of any outcome is unity, so
∫

f(x)dx = 1.

Discrete distributions In some cases, the variable x can only take on discrete values xi, where
i = 1, 2, . . . , N (N can be infinite). In this case, the p.d.f. is defined as:

Probability to observe the value xi = f(xi). (2)

with the normalization condition
∑N

i=1
f(xi) = 1.

1.2 Cumulative distributions

The probability for a random variable to take on a value less than or equal to x is given by the
“cumulative distribution”, F (x). It is related to the p.d.f. by:

∫ x

−∞

f(x′)dx′ continuous

F (x) =































(3)
∑

xi<x

f(x′i) discrete

A very useful concept related to this is the “quantile of order α”. The quantile xα is defined as
the value of the random variable x such that F (xα) = α, with 0 ≤ α ≤ 1; that is, the quantile is
simply the inverse function of the cumulative distribution:

xα = F−1(α) (4)

and corresponds to the value of x such that the total probability for seeing a value up to and
including xα is α.
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1.3 Expectation values

The expectation value (or “popultation mean”, or simply “mean”) of a random variable, x, dis-
tributed according to a p.d.f. f(x), is

E[x] =

∫

∞

−∞

x f(x)dx ≡ µ, (5)

Note it is simply the integral of x weighted by the p.d.f. f(x). If one has a function of the random
variable x denoted by a(x), then its expectation value is

E[a(x)] =

∫

∞

−∞

a(x) f(x)dx, (6)

1.3.1 Central moments

The nth central moment of x is defined as

E[(x− E[x])n] =

∫

∞

−∞

(x− µ)n f(x)dx ≡ µn, (7)

and in particular, the second central moment,

E[(x− E[x])2] =

∫

∞

−∞

(x− µ)2 f(x)dx ≡ σ2 = V [x] (8)

is called the “population variance” (or just variance) of x. Note that E[(x−E[x])2] = E[x2]− µ2,
so the variance is a measure of how widely x is spread about its mean value. The square root of
the variance, σ, is called the standard deviation of x.

1.3.2 Multi-variant expectation values

For the case of a function of more than one random variable, a(~x) = a(x1, x2, . . . , xn), with a
multivariant p.d.f. f(~x) = f(x1, x2, . . . , xn), the expectation value and variance are

E[a(~x)] =

∫

∞

−∞

∫

∞

−∞

. . .

∫

∞

−∞

a(~x) f(~x)dx1dx2 . . . dxn = µa (9)

V [a(~x)] = E[(a− µa)
2] =

∫

∞

−∞

∫

∞

−∞

. . .

∫

∞

−∞

(a(~x)− µa)
2 f(~x)dx1dx2 . . . dxn = σ2

a (10)

The “covariance” of the two random variables, say x and y, is

Vxy = E[xy]− µxµy =

∫

∞

−∞

∫

∞

−∞

xy f(x, y)dx dy − µxµy, (11)

where µx = E[x] and µy = E[y]. The “covariance matrix” (or “error matrix”), Vij where i and
j equal x and y, is in this case a symmetric 2 × 2 matrix which has the variances Vii of x and
y on it’s diagonals, and the covariance between them on the off-diagonal. Often instead of using
cov[x, y] = Vxy, one defines a dimensionless correlation coefficient:

ρxy =
Vxy

σxσy
, (12)

where −1 ≤ ρxy ≤ 1 is a measure of how strongly correlated (or anti-correlated if negative) two
parameters are. Figure 1 shows the situation for a few cases ranging from completely uncorrelated
(ρxy = 0) to very highly correlated (ρxy = 0.99).
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Figure 1: Plots of the error ellipses for two random variables x and y with different amounts of
correlations between them.

2 Error propagation

Suppose one has a set of n random variables ~x distributed according to some joint p.d.f. f(~x).
Suppose that the p.d.f. is not completely known, but the mean values, ~µ = (µ1, µ2, . . . , µn), and
covariance matrix, Vij , are known (or at least have been estimated).

Now consider a function of the n random variables a(~x). Without knowing the p.d.f.’s of the
xi, we cannot determine the p.d.f. of a; however, one can approximate the expectation value of a
and its variance by first expanding the function a(~x) to first order about the mean values of the xi,
which we do know:

a(~x) ≈ a(~µ) +

n
∑

i=1

[

∂a

∂xi

]

~x=~µ

(xi − µi). (13)

The expectation value is then (as one would expect)

E[a(~x)] ≈ a(~µ) (14)

because E[xi − µi] = 0. Similarly, the expectation value of a2 is

E[a2(~x)] ≈ a2(~µ) +
n
∑

i,j=1

[

∂a

∂xi

∂a

∂xj

]

~x=~µ

Vij (15)

so that the variance V [a] = E[a2]− µ2
a is

V [a(~x)] ≈
n
∑

i,j=1

[

∂a

∂xi

∂a

∂xj

]

~x=~µ

Vij (16)
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and similarly the covariance of two functions a(~x) and b(~x) is

Vab ≈
n
∑

i,j=1

[

∂a

∂xi

∂b

∂xj

]

~x=~µ

Vij . (17)

Eqs. (16) and (17) form the basis of error propagation (i.e. the variances, which are used as measures
of statistical uncertainties, are propagated from the xi to the functions a, b, etc.). For the case
where the xi are not correlated, i.e. Vii = σ2

i and Vij = 0 for i 6= j, the above reduce to

V [a(~x)] = σ2
a ≈

n
∑

i=1

[

∂a

∂xi

]2

~x=~µ

σ2
i (18)

and

Vab ≈
n
∑

i=1

[

∂a

∂xi

∂b

∂xi

]

~x=~µ

σ2
i . (19)

The simplest case is if a = x + y and the two are uncorrelated. Then ∂a
∂x = 1 and ∂a

∂y = 1 and

Eq. (18) leads to σ2
a = (1)2σ2

x + (1)2σ2
y ; their uncertainties add in quadrature, as you may have

already learned, or you can say their final variance is just the sum of the variances of the random
variables x and y.

2.1 An example

Say you’ve measured two things which are 50% correlated (so Vxy = 0.5) and you’ve found µx = 8.0
and µy = 10.1 with uncertainties (standard deviations) σx = 0.7 and σy = 0.8. You’re interested
in the value a = 2x− y. Clearly the expectation value of a is 5.9; but how well do you know that
it is 5.9? Based on Eq. (16), the variance of a is

σ2
a = (2σx)

2 + σ2
y + 2(−2Vxy)

⇒ σa =
√

4σ2
x + σ2

y − 4ρxyσxσy

= 1.2

So based on the two measurements of x = 8.0 ± 0.7 and y = 10.1 ± 0.8 and given the accuracy of
those measurements (the ± values are the standard deviations, σx and σy) as well as their degree of
correlation, you know a = 5.9± 1.2. If they were uncorrelated (as is often the [valid] assumption),
you’ll find a = 5.9± 1.6. If 100% anti-correlated (so ρxy = −1), a = 5.9± 2.2.

2.2 Another example

You’ve measured the half-life of a particle to be t1/2 = (298 ± 1) ms and an initial number of
particles to be (1.234± 0.005)× 106. How many are there after 1 second?

Let ∆N◦(= σN◦
) = 0.005× 106 and let’s convert the lifetime information to the decay constant

via λ = ln 2/t1/2 = 2.326 s−1. Since dλ/dt1/2 = − ln 2/t2
1/2, ∆λ = ∆t1/2/t

2

1/2 = 0.0078 s−1. Note

(or at least assume) our measurement of the number nuclei is independent of the lifetime, so these
are uncorrelated random variables (VN◦,λ = ρN◦ λ = 0). From N = N◦e

−λt, we know the mean
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value of the number of atoms is N = 1.205× 105. To estimate the uncertainty from our imperfect
knowledge of λ and N◦, we use Eq. (16) and find

∂N

∂N◦

= e−λt and
∂N

∂λ
= −λN◦e

−λt

so

(∆N)2 =

(

∂N

∂N◦

∆N◦

)2

+

(

∂N

∂λ
∆λ

)2

+ 2

(

∂N

∂N◦

∂N

∂λ
VN◦,λ

)

⇒ ∆N = e−λt
√

∆N2
◦
+ (λN◦∆λ)2

= 2242.

So the number of nuclei after 1 s is (1.205± 0.022)× 105.
Can you show that the activity after ten half-lives is A = 2800± 43 Bq?

3 Specific distribution functions

3.1 Binomial distribution

You’ve all heard of this one. . . for N independent observations for which there are two possible
outcomes (e.g. “success” or “failure”) where the probability for one (“success”) is some constant
value p, and the other (“failure”) is q = 1−p. One can define “sucess” if a measured quantity lands
in a particular bin of a histogram (failure if not) with N total entries in the histogram. The set of
trials can be regarded as a single measurement and is characterized by a discrete random variable,
k, defined to be the total number of successes. Note that here the entire set of observations is
treated as a single random measurement, not each individual trial. That is, the sample space is
defined to be the set of possible values of k successes given N observations. If one were to repeat
the entire experiment many times with N trials each time, the resulting values of k would occur
with relative frequencies given by the so-called binomial distribution.

The binomial distribution gives the total probability to have k successes in N events according
to

f(k;N, p) =
N !

k!(N − k)!
pk(1− p)N−k, (20)

for k = 0, 1, . . . , N . One can show the expectation value of k is E[k] = Np and the variance is
V [k] = Np(1 − p). Let’s not bother with the multinomial distribution, which is a generalization
to where there are more than just “success” and “failure” results; there are m different possible
outcomes.

3.2 Poisson distribution

The factorials in the binomial distribution are cumbersome and quickly become incalculable for

large N ; for example, 150! = 5.7× 10262 ( ). Consider the limit that N is very large and p is very
small, but the expectation value of the number of successes (i.e. their product Np) is some finite
value λ. It can be shown that in this limit, the binomial distribution approaches

f(k;λ) =
λk

k!
e−λ, (21)
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which is known as the Poisson distribution. Here k = 0, 1, . . . ,∞ and the p.d.f. has only one
parameter, λ. The expectation value for the Poisson distribution is E[k] =

∑

∞

k=0
k λk

k! e
−λ = λ, and

its variance is V [k] =
∑

∞

k=0
(k − λ)2 λ

k

k! e
−λ also equals λ.

3.3 The Gaussian distribution

The normal, or Gaussian, distribution is the p.d.f. of a continuous random variable, x, defined by

f(x;µ, σ2) =
1√
2πσ2

exp

(−(x− µ)2

2σ2

)

(22)

where x can take on any value between ±∞. As expected, the two parameters represent the mean
and variance: E[x] = µ and V [x] = σ2.

The importance of the Gaussian distribution comes from the Central Limit Theorem which
states that the sum of n independent continuous random variables xi with means µi and variances
σ2
i becomes a Gaussian random variable with mean µ =

∑n
i=1

µi and variance σ2 =
∑n

i=1
σ2
i in

the limit that n approaches infinity. This holds regardless of the individual p.d.f.’s of the xi, and
this is the justification for treating measurement uncertainties as Gaussian random variables; this
holds to the extent that the total uncertainty is the sum of a large number of small contributions
(although “large” is a somewhat subjective term).

Figure 2 shows a comparison of the binomial, Poission and Gaussian distributions for N =
150 and a few values of p such that the means are 2, 10, 25 and 75. Note the limiting cases of
applicability: when Np is small (2), the Gaussian is quite different from the others (is not a good
approximation and shouldn’t be used!). Because in this case p is small and N is large, the Poisson
distribution reproduces well the binomial. By Np = 10, the three distributions are pretty close to
each other. For Np = 25, the Poisson and Gaussian are aligning even better (as a consequence
of the Central Limit Theorem), however the binomial is different because now p = 1/6 isn’t very
small as it should be for the Poisson to be a good approximation to the binomial. Finally, with
p = 1/2, the Poisson and Gaussian are almost the same, and clearly with p so large the binomial
is dramatically different.

The N -dimensional generalization of the Gaussian distribution is the multivariant Gaussian:

f(~x; ~µ, V ) =
1

(2π)N/2|V |1/2 exp
(

−1

2
(~x− ~µ)TV −1(~x− ~µ)

)

, (23)

where ~x and ~µ are column vectors, ~xT and ~µT are the corresponding row vectors, and V is a
symmetric N × N matrix. The expectation values and (co)variances are found to be E[xi] =
µi, V [xi] = Vii, and cov[xi, xj ] = Vij .

In the 2D case, the p.d.f. becomes, with ρ = cov[x, y]/σxσy the correlation coefficient,

f(x, y;µx, µy, σx, σy, ρ) =
1

2πσxσy
√

1− ρ2

× exp

{

− 1

2(1− ρ2)

[

(

x− µx

σx

)2

+

(

y − µy

σy

)2

− 2ρ

(

x− µx

σx

)(

y − µy

σy

)

]}

. (24)

It is this expression which defines the error ellipses of Fig. 1. The contours plotted are the ones
that correspond to containing 68.27% of the area under this 2D multivariant Gaussian surface.
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Figure 2: Comparison of binomial (histogram), Poisson (filled circles) and Gaussian (solid line)
distributions with different means.
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Figure 3: The χ2 probability density for various values of the parameter n (the degrees of freedom).

3.4 The χ
2 distribution

The χ2 (chi-square) distribution of the continuous variable z (0 ≤ z < ∞) is defined by

f(z;n) =
1

2n/2Γ(n/2)
zn/2−1e−z/2 (25)

where n = 1, 2, . . . is called the number of degrees of freedom. The gamma function Γ(x) is in many
math libraries. If x = n is an integer, Γ(n) = n!; in general, Γ(x + 1) = xΓ(x) and Γ(1

2
) =

√
π.

The mean and variance of the χ2 distribution can be found to be E[x] = n and V [z] = 2n.
This distribution derives its importance from the following: given N independent Gaussian

random variables xi with known mean µi and variance σ2
i , it can be shown that the random

variable

z =
N
∑

i=1

(xi − µi)
2

σ2
i

(26)

is distributed according to the χ2 distribution for N degrees of freedom. More generally, if the xi
are not independent but are described by an N -dimensional Gaussian p.d.f., the variable

z = (~x− ~µ)T V −1 (~x− ~µ) (27)

is a χ2 random variable for N degrees of freedom. This is an important part of hypothesis-testing
and determining the quality of fits. Figure 3 shows this distribution for a few different degrees of
freedom.

4 Parameter Estimation

Suppose one has a sample of size n of a random variable x: x1, x2, . . . , xn. It is assumed that
x is distributed according to some p.d.f. f(x) which is not known. We would like to construct a
function of the xi to be an estimator for the expectation value of x, E[x] = µ. One possibility is
the arithmetic mean of the xi, defined by

x =
1

n

n
∑

i=1

xi. (28)
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The arithmetic mean of the elements of a sample is called the “sample mean”; it should not be
confused with the expectation value (“population mean”) of x. The latter is denoted by µ or E[x],
for which x is an estimator. The expectation value of our estimator x is

E[x] = E

[

1

n

n
∑

i=1

xi

]

=
1

n

n
∑

i=1

E[xi] = µ (29)

since one can show that E[xi] = µ for all i. Thus we can say that the sample mean x is an unbiased

estimator for the population mean µ.
The “sample variance”, s2, of this sample of size n is defined by

s2 =
1

n− 1

n
∑

i=1

(xi − x)2. (30)

By computing the expectation value of s2, one can show that the sample variance is also an
unbiased estimator of the population variance σ2. If the mean is known, one would of course use
that information and instead define

S2 =
1

n− 1

n
∑

i=1

(xi − µ)2 (31)

for an unbiased estimator of the population variance.
One can estimate the covariance of two random variables, x and y, of unknown means via

V̂xy =
1

n− 1

n
∑

i=1

(xi − x)(yi − y) (32)

which can also be shown to be an unbiased estimator of the true covariance Vxy.
The variance of x is

V [x] = E[x2]− (E[x])2 = E

[(

1

n

n
∑

i=1

xi

)(

1

n

n
∑

i=1

xj

)]

− µ2

=
1

n2

n
∑

i,j=1

E[xixj ]− µ2

=
1

n2
[(n2 − µ)µ2 + n(µ2 + σ2)]− µ2

=
σ2

n
(33)

where we have used the fact that E[xixj ] = µ2 for i 6= j and, for i = j, E[x2i ] = µ2 + σ2. This
expresses the fact that the standard deviation of the mean of n measurements of x is equal to the
standard deviation of f(x) itself (σ) divided by

√
n. The more counts you have, the better

you measure something , and the improvement goes like 1/
√
n.

The variance of s2 can be shown to be

V [s2] =
1

n
(µ4 −

n− 3

n− 1
σ4), (34)
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where µ4 is the fourth central moment of x. For Gaussianly distributed xi, this becomes

V [s2]Gauss =
2σ4

n− 1
(35)

for any n > 1. For large n, the standard deviation of s2 (the “uncertainty on the uncertainty”) is
σ/

√
2n.
Finally, if the xi have different, known variances σ2

i , then the weighted average

x =
1

2

n
∑

i=1

wixi (36)

is an unbiased estimator for µ with a smaller variance than an unweighted average; here the
weighting factors are wi = 1/σ2

i and w =
∑n

i=1
wi. In this case, the variance of x is 1/w so the

standard deviation is 1/
√
w.

4.1 Method of maximum likelihood

4.2 Method of least squares

4.3 Hypothesis testing

4.4 Confidence levels

4.5 Bayesian intervals
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