Notes on statistics

D. Melconian

1 Background

1.1 Probability distribution functions

Continuous distributions Consider a repeatable experiment where the outcome is described by one continuous variable, x. The sample space spans all possible values that x can take. If one asks what the probability of observing a value within the interval $[x, x+d x]$, then the answer is given by the "probability distribution function" (p.d.f.), $f(x)$. I.e.:

$$
\begin{equation*}
\text { Probability that } x \text { observed in interval }[x, x+d x]=f(x) d x \text {. } \tag{1}
\end{equation*}
$$

Another way to interpret this (the frequentist approach) is to say that $f(x) d x$ is the fraction of times that an observation is found between x and $x+d x$, in the limit that the number of observations is very large.

The p.d.f. is normalized such that the total probability of any outcome is unity, so $\int f(x) d x=1$.
Discrete distributions In some cases, the variable x can only take on discrete values x_{i}, where $i=1,2, \ldots, N$ (N can be infinite). In this case, the p.d.f. is defined as:

$$
\begin{equation*}
\text { Probability to observe the value } x_{i}=f\left(x_{i}\right) \text {. } \tag{2}
\end{equation*}
$$

with the normalization condition $\sum_{i=1}^{N} f\left(x_{i}\right)=1$.

1.2 Cumulative distributions

The probability for a random variable to take on a value less than or equal to x is given by the "cumulative distribution", $F(x)$. It is related to the p.d.f. by:

$$
F(x)= \begin{cases}\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime} & \text { continuous } \tag{3}\\ \sum_{x_{i}<x} f\left(x_{i}^{\prime}\right) \quad \text { discrete }\end{cases}
$$

A very useful concept related to this is the "quantile of order α ". The quantile x_{α} is defined as the value of the random variable x such that $F\left(x_{\alpha}\right)=\alpha$, with $0 \leq \alpha \leq 1$; that is, the quantile is simply the inverse function of the cumulative distribution:

$$
\begin{equation*}
x_{\alpha}=F^{-1}(\alpha) \tag{4}
\end{equation*}
$$

and corresponds to the value of x such that the total probability for seeing a value up to and including x_{α} is α.

1.3 Expectation values

The expectation value (or "popultation mean", or simply "mean") of a random variable, x, distributed according to a p.d.f. $f(x)$, is

$$
\begin{equation*}
E[x]=\int_{-\infty}^{\infty} x f(x) d x \equiv \mu, \tag{5}
\end{equation*}
$$

Note it is simply the integral of x weighted by the p.d.f. $f(x)$. If one has a function of the random variable x denoted by $a(x)$, then its expectation value is

$$
\begin{equation*}
E[a(x)]=\int_{-\infty}^{\infty} a(x) f(x) d x \tag{6}
\end{equation*}
$$

1.3.1 Central moments

The $n^{\text {th }}$ central moment of x is defined as

$$
\begin{equation*}
E\left[(x-E[x])^{n}\right]=\int_{-\infty}^{\infty}(x-\mu)^{n} f(x) d x \equiv \mu_{n}, \tag{7}
\end{equation*}
$$

and in particular, the second central moment,

$$
\begin{equation*}
E\left[(x-E[x])^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x \equiv \sigma^{2}=V[x] \tag{8}
\end{equation*}
$$

is called the "population variance" (or just variance) of x. Note that $E\left[(x-E[x])^{2}\right]=E\left[x^{2}\right]-\mu^{2}$, so the variance is a measure of how widely x is spread about its mean value. The square root of the variance, σ, is called the standard deviation of x.

1.3.2 Multi-variant expectation values

For the case of a function of more than one random variable, $a(\vec{x})=a\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, with a multivariant p.d.f. $f(\vec{x})=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, the expectation value and variance are

$$
\begin{align*}
E[a(\vec{x})] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} a(\vec{x}) f(\vec{x}) d x_{1} d x_{2} \ldots d x_{n}=\mu_{a} \tag{9}\\
V[a(\vec{x})]=E\left[\left(a-\mu_{a}\right)^{2}\right] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty}\left(a(\vec{x})-\mu_{a}\right)^{2} f(\vec{x}) d x_{1} d x_{2} \ldots d x_{n}=\sigma_{a}^{2} \tag{10}
\end{align*}
$$

The "covariance" of the two random variables, say x and y, is

$$
\begin{equation*}
V_{x y}=E[x y]-\mu_{x} \mu_{y}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y-\mu_{x} \mu_{y} \tag{11}
\end{equation*}
$$

where $\mu_{x}=E[x]$ and $\mu_{y}=E[y]$. The "covariance matrix" (or "error matrix"), $V_{i j}$ where i and j equal x and y, is in this case a symmetric 2×2 matrix which has the variances $V_{i i}$ of x and y on it's diagonals, and the covariance between them on the off-diagonal. Often instead of using $\operatorname{cov}[x, y]=V_{x y}$, one defines a dimensionless correlation coefficient:

$$
\begin{equation*}
\rho_{x y}=\frac{V_{x y}}{\sigma_{x} \sigma_{y}}, \tag{12}
\end{equation*}
$$

where $-1 \leq \rho_{x y} \leq 1$ is a measure of how strongly correlated (or anti-correlated if negative) two parameters are. Figure 1 shows the situation for a few cases ranging from completely uncorrelated ($\rho_{x y}=0$) to very highly correlated ($\rho_{x y}=0.99$).

Figure 1: Plots of the error ellipses for two random variables x and y with different amounts of correlations between them.

2 Error propagation

Suppose one has a set of n random variables \vec{x} distributed according to some joint p.d.f. $f(\vec{x})$. Suppose that the p.d.f. is not completely known, but the mean values, $\vec{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$, and covariance matrix, $V_{i j}$, are known (or at least have been estimated).

Now consider a function of the n random variables $a(\vec{x})$. Without knowing the p.d.f.'s of the x_{i}, we cannot determine the p.d.f. of a; however, one can approximate the expectation value of a and its variance by first expanding the function $a(\vec{x})$ to first order about the mean values of the x_{i}, which we do know:

$$
\begin{equation*}
a(\vec{x}) \approx a(\vec{\mu})+\sum_{i=1}^{n}\left[\frac{\partial a}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}\left(x_{i}-\mu_{i}\right) . \tag{13}
\end{equation*}
$$

The expectation value is then (as one would expect)

$$
\begin{equation*}
E[a(\vec{x})] \approx a(\vec{\mu}) \tag{14}
\end{equation*}
$$

because $E\left[x_{i}-\mu_{i}\right]=0$. Similarly, the expectation value of a^{2} is

$$
\begin{equation*}
E\left[a^{2}(\vec{x})\right] \approx a^{2}(\vec{\mu})+\sum_{i, j=1}^{n}\left[\frac{\partial a}{\partial x_{i}} \frac{\partial a}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j} \tag{15}
\end{equation*}
$$

so that the variance $V[a]=E\left[a^{2}\right]-\mu_{a}^{2}$ is

$$
\begin{equation*}
V[a(\vec{x})] \approx \sum_{i, j=1}^{n}\left[\frac{\partial a}{\partial x_{i}} \frac{\partial a}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j} \tag{16}
\end{equation*}
$$

and similarly the covariance of two functions $a(\vec{x})$ and $b(\vec{x})$ is

$$
\begin{equation*}
V_{a b} \approx \sum_{i, j=1}^{n}\left[\frac{\partial a}{\partial x_{i}} \frac{\partial b}{\partial x_{j}}\right]_{\vec{x}=\vec{\mu}} V_{i j} . \tag{17}
\end{equation*}
$$

Eqs. (16) and (17) form the basis of error propagation (i.e. the variances, which are used as measures of statistical uncertainties, are propagated from the x_{i} to the functions a, b, etc.). For the case where the x_{i} are not correlated, i.e. $V_{i i}=\sigma_{i}^{2}$ and $V_{i j}=0$ for $i \neq j$, the above reduce to

$$
\begin{equation*}
V[a(\vec{x})]=\sigma_{a}^{2} \approx \sum_{i=1}^{n}\left[\frac{\partial a}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}}^{2} \sigma_{i}^{2} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{a b} \approx \sum_{i=1}^{n}\left[\frac{\partial a}{\partial x_{i}} \frac{\partial b}{\partial x_{i}}\right]_{\vec{x}=\vec{\mu}} \sigma_{i}^{2} . \tag{19}
\end{equation*}
$$

The simplest case is if $a=x+y$ and the two are uncorrelated. Then $\frac{\partial a}{\partial x}=1$ and $\frac{\partial a}{\partial y}=1$ and Eq. (18) leads to $\sigma_{a}^{2}=(1)^{2} \sigma_{x}^{2}+(1)^{2} \sigma_{y}^{2}$; their uncertainties add in quadrature, as you may have already learned, or you can say their final variance is just the sum of the variances of the random variables x and y.

2.1 An example

Say you've measured two things which are 50% correlated (so $V_{x y}=0.5$) and you've found $\mu_{x}=8.0$ and $\mu_{y}=10.1$ with uncertainties (standard deviations) $\sigma_{x}=0.7$ and $\sigma_{y}=0.8$. You're interested in the value $a=2 x-y$. Clearly the expectation value of a is 5.9 ; but how well do you know that it is 5.9 ? Based on Eq. (16), the variance of a is

$$
\begin{aligned}
\sigma_{a}^{2} & =\left(2 \sigma_{x}\right)^{2}+\sigma_{y}^{2}+2\left(-2 V_{x y}\right) \\
\Rightarrow \quad \sigma_{a} & =\sqrt{4 \sigma_{x}^{2}+\sigma_{y}^{2}-4 \rho_{x y} \sigma_{x} \sigma_{y}} \\
& =1.2
\end{aligned}
$$

So based on the two measurements of $x=8.0 \pm 0.7$ and $y=10.1 \pm 0.8$ and given the accuracy of those measurements (the \pm values are the standard deviations, σ_{x} and σ_{y}) as well as their degree of correlation, you know $a=5.9 \pm 1.2$. If they were uncorrelated (as is often the [valid] assumption), you'll find $a=5.9 \pm 1.6$. If 100% anti-correlated (so $\rho_{x y}=-1$), $a=5.9 \pm 2.2$.

2.2 Another example

You've measured the half-life of a particle to be $t_{1 / 2}=(298 \pm 1) \mathrm{ms}$ and an initial number of particles to be $(1.234 \pm 0.005) \times 10^{6}$. How many are there after 1 second?

Let $\Delta N_{\circ}\left(=\sigma_{N_{\circ}}\right)=0.005 \times 10^{6}$ and let's convert the lifetime information to the decay constant via $\lambda=\ln 2 / t_{1 / 2}=2.326 \mathrm{~s}^{-1}$. Since $d \lambda / d t_{1 / 2}=-\ln 2 / t_{1 / 2}^{2}, \Delta \lambda=\Delta t_{1 / 2} / t_{1 / 2}^{2}=0.0078 \mathrm{~s}^{-1}$. Note (or at least assume) our measurement of the number nuclei is independent of the lifetime, so these are uncorrelated random variables $\left(V_{N_{\mathrm{o}}, \lambda}=\rho_{N_{\circ} \lambda}=0\right)$. From $N=N_{\circ} e^{-\lambda t}$, we know the mean
value of the number of atoms is $N=1.205 \times 10^{5}$. To estimate the uncertainty from our imperfect knowledge of λ and N_{\circ}, we use Eq. (16) and find

$$
\frac{\partial N}{\partial N_{\circ}}=e^{-\lambda t} \quad \text { and } \quad \frac{\partial N}{\partial \lambda}=-\lambda N_{\circ} e^{-\lambda t}
$$

so

$$
\begin{aligned}
(\Delta N)^{2} & =\left(\frac{\partial N}{\partial N_{\circ}} \Delta N_{\circ}\right)^{2}+\left(\frac{\partial N}{\partial \lambda} \Delta \lambda\right)^{2}+2\left(\frac{\partial N}{\partial N_{\circ}} \frac{\partial N}{\partial \lambda} V_{N_{\circ}, \lambda}\right) \\
\Rightarrow \Delta N & =e^{-\lambda t} \sqrt{\Delta N_{\circ}^{2}+\left(\lambda N_{\circ} \Delta \lambda\right)^{2}} \\
& =2242
\end{aligned}
$$

So the number of nuclei after 1 s is $(1.205 \pm 0.022) \times 10^{5}$.
Can you show that the activity after ten half-lives is $\mathcal{A}=2800 \pm 43 \mathrm{~Bq}$?

3 Specific distribution functions

3.1 Binomial distribution

You've all heard of this one...for N independent observations for which there are two possible outcomes (e.g. "success" or "failure") where the probability for one ("success") is some constant value p, and the other ("failure") is $q=1-p$. One can define "sucess" if a measured quantity lands in a particular bin of a histogram (failure if not) with N total entries in the histogram. The set of trials can be regarded as a single measurement and is characterized by a discrete random variable, k, defined to be the total number of successes. Note that here the entire set of observations is treated as a single random measurement, not each individual trial. That is, the sample space is defined to be the set of possible values of k successes given N observations. If one were to repeat the entire experiment many times with N trials each time, the resulting values of k would occur with relative frequencies given by the so-called binomial distribution.

The binomial distribution gives the total probability to have k successes in N events according to

$$
\begin{equation*}
f(k ; N, p)=\frac{N!}{k!(N-k)!} p^{k}(1-p)^{N-k}, \tag{20}
\end{equation*}
$$

for $k=0,1, \ldots, N$. One can show the expectation value of k is $E[k]=N p$ and the variance is $V[k]=N p(1-p)$. Let's not bother with the multinomial distribution, which is a generalization to where there are more than just "success" and "failure" results; there are m different possible outcomes.

3.2 Poisson distribution

The factorials in the binomial distribution are cumbersome and quickly become incalculable for large N; for example, $150!=5.7 \times 10^{262}$ (©). Consider the limit that N is very large and p is very small, but the expectation value of the number of successes (i.e. their product $N p$) is some finite value λ. It can be shown that in this limit, the binomial distribution approaches

$$
\begin{equation*}
f(k ; \lambda)=\frac{\lambda^{k}}{k!} e^{-\lambda} \tag{21}
\end{equation*}
$$

which is known as the Poisson distribution. Here $k=0,1, \ldots, \infty$ and the p.d.f. has only one parameter, λ. The expectation value for the Poisson distribution is $E[k]=\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}=\lambda$, and its variance is $V[k]=\sum_{k=0}^{\infty}(k-\lambda)^{2} \frac{\lambda^{k}}{k!} e^{-\lambda}$ also equals λ.

3.3 The Gaussian distribution

The normal, or Gaussian, distribution is the p.d.f. of a continuous random variable, x, defined by

$$
\begin{equation*}
f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right) \tag{22}
\end{equation*}
$$

where x can take on any value between $\pm \infty$. As expected, the two parameters represent the mean and variance: $E[x]=\mu$ and $V[x]=\sigma^{2}$.

The importance of the Gaussian distribution comes from the Central Limit Theorem which states that the sum of n independent continuous random variables x_{i} with means μ_{i} and variances σ_{i}^{2} becomes a Gaussian random variable with mean $\mu=\sum_{i=1}^{n} \mu_{i}$ and variance $\sigma^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}$ in the limit that n approaches infinity. This holds regardless of the individual p.d.f.'s of the x_{i}, and this is the justification for treating measurement uncertainties as Gaussian random variables; this holds to the extent that the total uncertainty is the sum of a large number of small contributions (although "large" is a somewhat subjective term).

Figure 2 shows a comparison of the binomial, Poission and Gaussian distributions for $N=$ 150 and a few values of p such that the means are $2,10,25$ and 75 . Note the limiting cases of applicability: when $N p$ is small (2), the Gaussian is quite different from the others (is not a good approximation and shouldn't be used!). Because in this case p is small and N is large, the Poisson distribution reproduces well the binomial. By $N p=10$, the three distributions are pretty close to each other. For $N p=25$, the Poisson and Gaussian are aligning even better (as a consequence of the Central Limit Theorem), however the binomial is different because now $p=1 / 6$ isn't very small as it should be for the Poisson to be a good approximation to the binomial. Finally, with $p=1 / 2$, the Poisson and Gaussian are almost the same, and clearly with p so large the binomial is dramatically different.

The N-dimensional generalization of the Gaussian distribution is the multivariant Gaussian:

$$
\begin{equation*}
f(\vec{x} ; \vec{\mu}, V)=\frac{1}{(2 \pi)^{N / 2}|V|^{1 / 2}} \exp \left(-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} V^{-1}(\vec{x}-\vec{\mu})\right), \tag{23}
\end{equation*}
$$

where \vec{x} and $\vec{\mu}$ are column vectors, \vec{x}^{T} and $\vec{\mu}^{T}$ are the corresponding row vectors, and V is a symmetric $N \times N$ matrix. The expectation values and (co)variances are found to be $E\left[x_{i}\right]=$ $\mu_{i}, V\left[x_{i}\right]=V_{i i}$, and $\operatorname{cov}\left[x_{i}, x_{j}\right]=V_{i j}$.

In the 2D case, the p.d.f. becomes, with $\rho=\operatorname{cov}[x, y] / \sigma_{x} \sigma_{y}$ the correlation coefficient,

$$
\begin{align*}
& f\left(x, y ; \mu_{x}, \mu_{y}, \sigma_{x}, \sigma_{y}, \rho\right)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \\
& \quad \times \exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}+\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}-2 \rho\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)\right]\right\} . \tag{24}
\end{align*}
$$

It is this expression which defines the error ellipses of Fig. 1. The contours plotted are the ones that correspond to containing 68.27% of the area under this 2D multivariant Gaussian surface.

Figure 2: Comparison of binomial (histogram), Poisson (filled circles) and Gaussian (solid line) distributions with different means.

Figure 3: The χ^{2} probability density for various values of the parameter n (the degrees of freedom).

3.4 The χ^{2} distribution

The χ^{2} (chi-square) distribution of the continuous variable $z(0 \leq z<\infty)$ is defined by

$$
\begin{equation*}
f(z ; n)=\frac{1}{2^{n / 2} \Gamma(n / 2)} z^{n / 2-1} e^{-z / 2} \tag{25}
\end{equation*}
$$

where $n=1,2, \ldots$ is called the number of degrees of freedom. The gamma function $\Gamma(x)$ is in many math libraries. If $x=n$ is an integer, $\Gamma(n)=n!$; in general, $\Gamma(x+1)=x \Gamma(x)$ and $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$. The mean and variance of the χ^{2} distribution can be found to be $E[x]=n$ and $V[z]=2 n$.

This distribution derives its importance from the following: given N independent Gaussian random variables x_{i} with known mean μ_{i} and variance σ_{i}^{2}, it can be shown that the random variable

$$
\begin{equation*}
z=\sum_{i=1}^{N} \frac{\left(x_{i}-\mu_{i}\right)^{2}}{\sigma_{i}^{2}} \tag{26}
\end{equation*}
$$

is distributed according to the χ^{2} distribution for N degrees of freedom. More generally, if the x_{i} are not independent but are described by an N-dimensional Gaussian p.d.f., the variable

$$
\begin{equation*}
z=(\vec{x}-\vec{\mu})^{T} V^{-1}(\vec{x}-\vec{\mu}) \tag{27}
\end{equation*}
$$

is a χ^{2} random variable for N degrees of freedom. This is an important part of hypothesis-testing and determining the quality of fits. Figure 3 shows this distribution for a few different degrees of freedom.

4 Parameter Estimation

Suppose one has a sample of size n of a random variable $x: x_{1}, x_{2}, \ldots, x_{n}$. It is assumed that x is distributed according to some p.d.f. $f(x)$ which is not known. We would like to construct a function of the x_{i} to be an estimator for the expectation value of $x, E[x]=\mu$. One possibility is the arithmetic mean of the x_{i}, defined by

$$
\begin{equation*}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} . \tag{28}
\end{equation*}
$$

The arithmetic mean of the elements of a sample is called the "sample mean"; it should not be confused with the expectation value ("population mean") of x. The latter is denoted by μ or $E[x]$, for which \bar{x} is an estimator. The expectation value of our estimator \bar{x} is

$$
\begin{equation*}
E[\bar{x}]=E\left[\frac{1}{n} \sum_{i=1}^{n} x_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} E\left[x_{i}\right]=\mu \tag{29}
\end{equation*}
$$

since one can show that $E\left[x_{i}\right]=\mu$ for all i. Thus we can say that the sample mean \bar{x} is an unbiased estimator for the population mean μ.

The "sample variance", s^{2}, of this sample of size n is defined by

$$
\begin{equation*}
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} . \tag{30}
\end{equation*}
$$

By computing the expectation value of s^{2}, one can show that the sample variance is also an unbiased estimator of the population variance σ^{2}. If the mean is known, one would of course use that information and instead define

$$
\begin{equation*}
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \tag{31}
\end{equation*}
$$

for an unbiased estimator of the population variance.
One can estimate the covariance of two random variables, x and y, of unknown means via

$$
\begin{equation*}
\hat{V}_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \tag{32}
\end{equation*}
$$

which can also be shown to be an unbiased estimator of the true covariance $V_{x y}$.
The variance of \bar{x} is

$$
\begin{align*}
V[\bar{x}]=E\left[\bar{x}^{2}\right]-(E[\bar{x}])^{2} & =E\left[\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)\left(\frac{1}{n} \sum_{i=1}^{n} x_{j}\right)\right]-\mu^{2} \\
& =\frac{1}{n^{2}} \sum_{i, j=1}^{n} E\left[x_{i} x_{j}\right]-\mu^{2} \\
& =\frac{1}{n^{2}}\left[\left(n^{2}-\mu\right) \mu^{2}+n\left(\mu^{2}+\sigma^{2}\right)\right]-\mu^{2} \\
& =\frac{\sigma^{2}}{n} \tag{33}
\end{align*}
$$

where we have used the fact that $E\left[x_{i} x_{j}\right]=\mu^{2}$ for $i \neq j$ and, for $i=j, E\left[x_{i}^{2}\right]=\mu^{2}+\sigma^{2}$. This expresses the fact that the standard deviation of the mean of n measurements of x is equal to the standard deviation of $f(x)$ itself (σ) divided by \sqrt{n}. The more counts you have, the better you measure something, and the improvement goes like $1 / \sqrt{n}$.

The variance of s^{2} can be shown to be

$$
\begin{equation*}
V\left[s^{2}\right]=\frac{1}{n}\left(\mu_{4}-\frac{n-3}{n-1} \sigma^{4}\right), \tag{34}
\end{equation*}
$$

where μ_{4} is the fourth central moment of x. For Gaussianly distributed x_{i}, this becomes

$$
\begin{equation*}
V\left[s^{2}\right]_{\mathrm{Gauss}}=\frac{2 \sigma^{4}}{n-1} \tag{35}
\end{equation*}
$$

for any $n>1$. For large n, the standard deviation of s^{2} (the "uncertainty on the uncertainty") is $\sigma / \sqrt{2 n}$.

Finally, if the x_{i} have different, known variances σ_{i}^{2}, then the weighted average

$$
\begin{equation*}
\bar{x}=\frac{1}{2} \sum_{i=1}^{n} w_{i} x_{i} \tag{36}
\end{equation*}
$$

is an unbiased estimator for μ with a smaller variance than an unweighted average; here the weighting factors are $w_{i}=1 / \sigma_{i}^{2}$ and $w=\sum_{i=1}^{n} w_{i}$. In this case, the variance of \bar{x} is $1 / w$ so the standard deviation is $1 / \sqrt{w}$.

4.1 Method of maximum likelihood

4.2 Method of least squares

4.3 Hypothesis testing

4.4 Confidence levels

4.5 Bayesian intervals

