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Abstract

The derivation of the differential decay rate for a 0+−→ 0+ decay is given. Recoil order correc-
tions are included and, where possible, so are massive neutrinos. Familiarity with the Dirac equation
and Feynman diagrams is assumed; however, given that, the steps in the calculations are explicitly
written out in gruesome detail so that the reader can easily follow the derivation.

The main purpose of this report is to formally outline the theory behind the β+ decay of a
superallowed decay (i.e. 38mK). The other purpose of this paper is to clarify what should be — and
help explain what has been — put into my Monte Carlo for Trinat’s β − ν correlation experiment.

Developments towards including polarization have been described in an earlier paper [1]. If I
ever find the time, I’ll merge them and embellish the theory for GT decays; so then I would describe
all of Trinat’s 36, 37, 38mK experiments and explain how it they are all implemented under my MC.
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1 Notation and Convention

As per Halzen and Martin [2], we take the γ-matrices to be:

γ0 =

(
I 0
0 −I

)

~γ =

(
0 ~σ
−~σ 0

)

and γ5 =

(
0 I

I 0

)

, (1)

where ~σ are the Pauli spin matrices and I is the unit 2 × 2 matrix.
We will also make use of the Dirac spinors

ur(p) =
√

E + m

(
χr

~σ·~p
E+mχr

)

, E > 0, r = 1, 2 (2a)

vr(p) =
√

|E| + m

(
~σ·~p

|E|+mφr

φr

)

, E < 0, r = 1, 2 (2b)

where the χ and φ spinors carry the spin of particles and anti-particles respectively; explicitly, they
are given by:

spin up
︷ ︸︸ ︷

χ1 =

(
1
0

)

, χ2 =

(
0
1

)

︸ ︷︷ ︸

spin down

, and φ1 =

(
0
1

)

︸ ︷︷ ︸

spin down

,

spin up
︷ ︸︸ ︷

φ2 =

(
1
0

)

. (3)

The Dirac wavefunctions are normalized such that:

u†u = v†v = 2E, (4a)

uu = −vv = 2m (4b)

The adjoints for wavefunctions (ψ) and operators (Γ) are:

ψ = γ0ψ† (5a)

and Γ = γ0Γ†γ0 (5b)

Some useful relations include:

(γ0)2 = −γ
2 = γ2

5 = I (6a)

(γµ)† = γ0γµγ0, (γ5)
† = γ5 (6b)

γµγ5 = −γ5γ
µ, (ur(p))† = γ0ur(p) (6c)

∑

spins

ur(p)ur(p) = 6 p + m, (6d)

and
∑

spins

vr(p)vr(p) = −6 p + m, (6e)

where 6 p ≡ pµγµ. (6f)

Throughout this report, terms of order 1/M and 1/M ′ are retained while higher powers (e.g. E2
e/M2

and k2/M ′2) are considered negligible; any time an approximation is applied, it will be noted by ≈
if not stated explicitly. All approximations are made to first order in their Taylor expansions; the
three used in this report are:

(1 ± x)−
1

2 = 1 ± 1
2x + O(x2) (7a)

(1 ± x)
1

2 = 1 ∓ 1
2x + O(x2) (7b)

and (1 ± x)−1 = 1 ∓ x + O(x2) (7c)

Finally, I work in units where ~ = c = 1; but I do not set me = 1.
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Figure 1: General Feynman diagrams for the 0+−→ 0+ β+ decay of Z
AX −→ Z−1

AY +e++νe as mediated
by a massive boson. The expressions for the propagators for both the vector and scalar interactions are
given below their diagrams. For β− decay, we need to lower isospin in the hadron current (τ+ → τ−),
change the direction of the lepton current and take the Hermition conjugate of its vertex parameters
(giving −igw

2
√

2
γν(CV + C ′

V γ5) and −igw

2
√

2
γν(CS + C ′

Sγ5)).

2 The Matrix Element of the Decay

The matrix element for β+ decay is:

Mfi =
1√
2

(
MV + MS

)
. (8)

where MV and MS are calculated using the Feynman diagrams of Figure 1. The four-momenta of
the particles are:

p = (M,~0), decay is from rest

k = (E′,−~k), |~k| =
√

E′2 − M ′2

pe = (Ee,−~pe), |~pe| =
√

E2
e − m2

e

and pν = (Eν ,−~pν), |~pν | =
√

E2
ν − m2

ν .

First, we use the diagram depicted in Figure 1(a) to get the matrix element for vector interactions:

−iMV = ψY (k)
[−igw√

2
γµτ+

]
ψX(p) ×

−i
(
gµν − QµQν

M2

W

)

Q2 − M2
W

× ψe(pe)
[−igw

2
√

2
γν(C∗

V + C ′∗
V γ5)

]
ψν(pν).

It is safe to assume that the momentum transfer, Q2 ≈ (5 MeV)2 ≪ (80 GeV)2 ≈ M2
W . In this

limit, the propagators reduce to constants:
igµν

M2

W

and −i
M2

W

. Therefore, we get for vector interactions

MV −−−−−−→
Q2≪M2

W

ψY (k)γµτ+ψX(p)
−g2

wgµν

4M2
W

ψe(pe)γ
ν
(
C∗

V + C ′∗
V γ5

)
ψν(pν) (9)

For scalar interactions, Figure 1(b) gives:

−iMS = ψY (k)
[−igw√

2
τ+

]
ψX(p)

−i

Q2 − M2
W

× ψe(pe)
[−igw

2
√

2
(C∗

S − C ′∗
S γ5)

]
ψν(pν)

MS −−−−−−→
Q2≪M2

W

ψY (k)τ+ψX(p)
−g2

w

4M2
W

ψe(pe)
(
C∗

S − C ′∗
S γ5

)
ψν(pν) (10)

Here we have assumed that the scalar and vector couplings are equal (gw) and that the mass of
the new boson W+

new = W+, the Standard Model vector boson.
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2.1 The Hadron Current

Now let us concentrate on the part involving the hadrons. Let us for simplicity assume that the
nucleus can be described as a Dirac particle, with minor adjustments due to nuclear structure and
isospin selection rules. With that in mind, we break up the nuclear wavefunctions as:

ψX(p) = us(p) ψspaψiso

=
√

2M

(
χs

~σ·~p
2M χs

)

ψspaψiso (11)

and ψY (k) = ψ′
spaψ

′
isour(k)

= ψ′
spaψ

′
iso

√
E′ + M ′

(

χ†
r

−~σ·~k
E′+M ′

χ†
r

)

(12)

Here, ψspa, ψ
′
spa represent our lack of knowledge of the spatial structure of the nuclear states, and

ψiso, ψ
′
iso are the isospins of the system. To deal with these nuclear effects, and since Gamow-Teller

decays (which flip the spin of the decaying nucleon) are a different class from the Fermi ones, one
defines the Fermi matrix element:

MF = 〈ψ′
iso|τ±|ψiso〉 〈ψ′

spa|ψspa〉. (13)

If my guess is right, the Gamow-Teller one would be given by:

MGT = 〈ψ′
iso|τ±|ψiso〉 〈ψ′

spa|~σ|ψspa〉, (14)

but this is only a guess!!
The strong force is invariant under rotations in isospin space, so it doesn’t care that a proton

has transformed into a neutron; since the spin and parity of these are both 0+, we don’t expect that
the wavefunction of the decaying nucleon (or the rest of the nucleus) will be signficantly perturbed
during the transition. Therefore, this overlap integral should be very close to what we assume will
be unity. In order to calculate MF , we just need the isospin component, which is easily calculable
in the 0+−→ 0+ cases (T = 1, T3 = −1 −→ 0):

MF =
〈
1 0

∣
∣
√

T (T + 1) − T3(T3 ± 1)
∣
∣ 1 − 1

〉
(15)

=
√

1(2) + 1(0)
〈
1 0 | 1 0

〉
(16)

MF =
√

2 (17)

OK. We now have expressions for the nuclear wavefunctions, and so can evaluate the hadron
currents, MV and MS . We get the hadron component of the matrix element of the decay by
substituting Eqs. (9) and (10) into Eq. (8); but before we evaluate this: let it be noted that for true
generality, one should take the hadron current to be:

ur(k)
[

F1γ
µ +

F2

M
σµνQν + i

F3

M
Qµ

+ G1γ
µγ5 +

G2

M
σµνQνγ5 + i

G3

M
Qµγ5

]

us(p), (18)

but this is a lot more complicated and best left to the theorists . . . see the paper by Nieto [3] (which
doesn’t even consider scalar components!).

So, armed with simplifications (11) and (12), we begin evaluating the matrix elements:

Scalar :

Mhad
S = 〈ψ′

iso|τ+|ψiso〉 〈ψ′
spa|ψspa〉 × ur(k)us(p)

= MF ×
√

2M
√

E′ + M ′
(

χ†
r

−~σ·~k
E′+M ′

χ†
r

) (
χs

~σ·~p
2M χs

)

= MF

√
2M

√
E′ + M ′

[(

1 − (~σ · ~k)(~σ · ~p)

2M(E′ + M ′)

)

χ†
rχs

]

. (19)

The product of the initial and final spins is 1 if r = s, otherwise it is zero. Thus scalar hadron
currents require the spin does not change in the decay.
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Vector : case (a) µ = 0

Mhad
V = MF

√
2M

√
E′ + M ′

(

χ†
r

−~σ·~k
E′+M ′

χ†
r

) (
I 0
0 −I

)(
χs

~σ·~p
2M χs

)

= MF

√
2M

√
E′ + M ′

[(

1 +
(~σ · ~k)(~σ · ~p)

2M(E′ + M ′)

)

χ†
rχs

]

. (20)

Here, as with the scalar case, the spin is not changed in the decay.

Vector : case (b) µ = i

Mhad
V = MF

√
2M

√
E′ + M ′

(

χ†
r

−~σ·~k
E′+M ′

χ†
r

) (
0 ~σ
−~σ 0

)(
χs

~σ·~p
2M χs

)

= MF

√
2M

√
E′ + M ′

[(~σ · ~p
2M

+
~σ · ~k

E′ + M ′

)

χ†
r~σχs

]

. (21)

This time, the Pauli spin matrices do change the spin, i.e. χ†
r~σχs 6= 0 only if r 6= s. As we are

considering 0+−→ 0+ decays, this term will be zero and we can ignore it. We therefore only have
to consider the time component of the Hamiltonian Eq. (8).

In the limit that |~k| ≪ 2M and |~p| ≪ E′ + M ′, the hadron currents for both scalar and vector
transitions are the same:

Mhad
S and Mhad

V −−−−−−−−−→
|~k|,|~p|≪M,M ′

MF

√
2M

√
E′ + M ′. (22)

2.2 Trace Analysis

Going back to our invariant amplitudes and including the leptons:

MS = MF

√

2M(E′ + M ′)
g2

w

4M2
W

ur(pν)
(
C∗

S − C ′∗
S γ5

)
vs(pe), (23)

MV = MF

√

2M(E′ + M ′)
g2

wg0ν

4M2
W

ur(pν)γν
(
C∗

V + C ′∗
V γ5

)
vs(pe). (24)

Also, let us put the strength of the weak interaction in terms of Fermi’s coupling constant:

g2
w

8M2
W

=
GF√

2
=⇒

(
g2

w

4M2
W

)2

= 2G2
F (25)

Upon squaring the matrix element, we will get four terms: |MV |2, |MS |2, and the cross terms

M†
SMV and M†

V MS . Let’s start with |MS |2, summing over the final states of the lepton spins2:

∑

spins

|MS |2 ≡ |〈MS〉|2 = 2M(E′ + M ′)|MF |22G2
F

∑

spins

[

v†
s(pe)

(
CS − C ′

Sγ5

)

×
(
γ0ur(pν)

)
ur(pν)

(
C∗

S − C ′∗
S γ5

)
vs(pe)

]

= 4M(E′ + M ′)|MF |2G2
F

∑

spins

[(
vs(pe)vs(pe)

)(
CS + C ′

Sγ5

)

×
(
ur(pν)ur(pν)

)(
C∗

S − C ′∗
S γ5

)]

= 4M(E′ + M ′)|MF |2G2
F Tr

[

(6 pe − me)(CS + C ′
Sγ5)

× (6 pν + mν)(C∗
S − C ′∗

S γ5)
]

(26)

2Since this is a 0+
−→ 0+ transition, there are no spins to average over in the initial state.
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Now recall some of the useful trace theorems:

Tr(AB) = Tr(BA) (27a)

Tr(odd number of γ−matrices) = 0 (27b)

Tr(γ5) = Tr(γ5 6 a) = Tr(γ5 6 a6 b) = 0 (27c)

Tr(I) = 4 (27d)

Tr(6 a6 b) = 4a · b (27e)

Tr(6 aγµ 6 bγν) = 4
(
aµbν + aνbµ − a · b gµν

)
(27f)

Using these, we can finish evaluating |〈MS〉|2:

|〈MS〉|2 = 4M(E′ + M ′)|MF |2G2
F Tr

[

6 pe

(
CS 6 pνC∗

S − C ′
Sγ5 6 pνC ′∗

S γ5

)

− memν

(
CSC∗

S − C ′
Sγ5C

′∗
S γ5

)]

= 4M(E′ + M ′)|MF |2G2
F Tr

[

6 pe 6 pν

(
|CS |2 + |C ′

S |2
)

− memν

(
|CS |2 − |C ′

S |2
)]

(28)

|〈MS〉|2 = 16M(E′ + M ′)EeEν |MF |2G2
F

[

(
|CS |2 + |C ′

S |2
)(

1 − ~pe · ~pν

EeEν

)

−
(
|CS |2 − |C ′

S |2
)memν

EeEν

]

(29)

Now the vector case proceeds in the same manner:

|〈MV 〉|2 = 4M(E′ + M ′)|MF |2G2
F

∑

spins

[

v†
s(pe)(γ

0γ0)
(
CV + C ′

V γ5

)
γ0

×
(
γ0ur(pν)

)
ur(pν)γ0

(
C∗

V + C ′∗
V γ5

)
vs(pe)

]

= 4M(E′ + M ′)|MF |2G2
F

∑

spins

[(
vs(pe)vs(pe)

)
γ0

(
CV + C ′

V γ5

)

×
(
ur(pν)ur(pν)

)
γ0

(
C∗

V + C ′∗
V γ5

)]

= 4M(E′ + M ′)|MF |2G2
F Tr

[

(6 pe − me)γ
0(CV + C ′

V γ5)

× (6 pν + mν)γ0(C∗
V + C ′∗

V γ5)
]

= 4M(E′ + M ′)|MF |2G2
F Tr

[

6 peγ
0
(
CV 6 pνγ0C∗

V + C ′
V γ5 6 pνγ0C ′∗

V γ5

)

− meγ
0
(
CV mνγ0C∗

V + C ′
V γ5mνγ0C ′∗

V γ5

)]

|〈MV 〉|2 = 4M(E′ + M ′)|MF |2G2
F

[(
|CV |2 + |C ′

V |2
)
Tr(6 peγ

0 6 pνγ0)

−
(
|CV |2 − |C ′

V |2
)
memνTr(I)

]

|〈MV 〉|2 = 16M(E′ + M ′)EeEν |MF |2G2
F

[

(
|CV |2 + |C ′

V |2
)(

1 +
~pe · ~pν

EeEν

)

−
(
|CV |2 − |C ′

V |2
)memν

EeEν

]

(30)

In the last line, we use the special case of Eq. (27f) where µ = ν = 0 to get Tr(6 peγ
0 6 pνγ0) =

EeEν + ~pe~pν .

6



Finally, we do the cross terms:

〈M2
V S〉 ≡ 〈M†

V MS〉 + 〈M†
SMV 〉

= 4M(E′ + M ′)|MF |2G2
F

∑

spins

[
[

v†
s(pe)

(
CV + C ′

V γ5

)
γ0

×
(
γ0ur(pν)

)
ur(pν)

(
C∗

S − C ′∗
S γ5

)
vs(pe)

]

+
[

v†
s(pe)

(
CS − C ′

Sγ5

)
γ0ur(pν)ur(pν)γ0

(
C∗

V + C ′∗
V γ5

)
vs(pe)

]
]

= 4M(E′ + M ′)|MF |2G2
F Tr

[

(6 pe − me)γ
0(CV + C ′

V γ5)(6 pν + mν)
(
C∗

S − C ′∗
S γ5

)

+ (6 pe − me)(CS + C ′
Sγ5)(6 pν + mν)γ0

(
C∗

V + C ′∗
V γ5

)]

= 4M(E′ + M ′)|MF |2G2
F Tr

[

6 peγ
0
(
CV mνC∗

S − C ′
V γ5mνC ′∗

S γ5

)

− meγ
0
(
CV 6 pνC∗

S − C ′
V γ5 6 pνC ′∗

S γ5

)

+6 pe(CSmνγ0C∗
V + C ′

Sγ5mνγ0C ′∗
V γ5

)

− me

(
CS 6 pνγ0C∗

V + C ′
Sγ5 6 pνγ0C ′∗

V γ5

)]

〈M2
V S〉 = 4M(E′ + M ′)|MF |2G2

F Tr
[

6 peγ
0mν

(
CV C∗

S − C ′
V C ′∗

S + CSC∗
V − C ′

SC ′∗
V

)

−6 pνγ0me

(
CV C∗

S + C ′
V C ′∗

S + CSC∗
V + C ′

SC ′∗
V

)]

(31)

Now note that

6 pγ0 =

[ (
E 0
0 −E

)

−
(

0 ~σ · ~p
−~σ · ~p 0

)] (
I 0
0 −I

)

=

(
E ~σ · ~p

~σ · ~p E

)

, (32)

so Tr(6 pγ0) = 4E. (33)

Also note that only the real components of Eq. (31) survive (i.e. CSC∗
V +C∗

SCV = 2ℜe(CSC∗
V ) =

2ℜe(C∗
SCV ), and similarly for the primed ones), so:

〈M2
V S〉 = 16M(E′ + M ′)|MF |2G2

F

[

2ℜe
(
CSC∗

V − C ′
SC ′∗

V

)
mνEe

− 2ℜe
(
CSC∗

V + C ′
SC ′∗

V

)
meEν

]

. (34)

Finally, we put them all together to get the total matrix element:

|〈Mfi〉|2 =
1

2
16M(E′ + M ′)EeEνG2

F

[

|MF |2
(

|CS |2 + |C ′
S |2 + |CV |2 + |C ′

V |2
)~pe · ~pν

EeEν

+2|MF |2ℜe
(

CSC∗
V − C ′

SC ′∗
V

)mν

Eν

−2|MF |2ℜe
(

CSC∗
V + C ′

SC ′∗
V

)me

Ee

−|MF |2
(

|CS |2 − |C ′
S |2 + |CV |2 − |C ′

V |2
)memν

EeEν

]

. (35)
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This can be re-written as:

|〈Mfi〉|2 = 8M(E′ + M ′)EeEνG2
F ξ

[

1 + a
~pe · ~pν

EeEν
+ be

me

Ee
+ bν

mν

Eν

+ beν
memν

EeEν

]

, (36)

with : ξ = |CS |2 + |C ′
S |2 + |CV |2 + |C ′

V |2 (37a)

aξ = |MF |2
(

− |CS |2 − |C ′
S |2 + |CV |2 + |C ′

V |2
)

(37b)

beξ = 2|MF |2ℜe
(

CSC∗
V + C ′

SC ′∗
V

)

(37c)

bνξ = −2|MF |2ℜe
(

CSC∗
V − C ′

SC ′∗
V

)

(37d)

beνξ = |MF |2
(

|CS |2 − |C ′
S |2 + |CV |2 − |C ′

V |2
)

. (37e)

3 The Decay Rate

The decay rate is derived from Fermi’s Golden Rule:

Γ =

∫

|〈Mfi〉|2
1

2EX

[

d3~k

(2π)32EY

d3~pν

(2π)32Eν

d3~pe

(2π)32Ee

]

(2π)4δ4(p − k − pe − pν), (38)

The matrix element, Mfi, was derived in the previous section. Had we used the hadron current,
Eq. (18), we would have ended up with a function, F (Q2, p ·pν), which is given by Nieto [3]. For pure
Fermi decays (all Gi = 0) and assuming no second class currents (F3 = 0), his expression greatly
simplifies to:

F (Q2, p · pν) = f2
1

[

2p · pν(M ′2 − M2 + m2
e − 2p · pν)

+ 2Q2p · pν − 1
2 (Q2 + m2

e)(Q
2 + M ′2 − M2) + MM ′(Q2 + m2

e)
]

− f2
2

[Q2 + M2 + M ′2

2M2
+

M ′

M

][

8(p · pν)2

− 4p · pν(M ′2 − M2 + m2
e + Q2) + 1

2 (Q2 + m2
e)

]

+ f1f2

[

8(p · pν)2(1 + M ′

M ) − 2p · pν

[
(1 + M ′

M )(2Q2 + m2
e + 2M ′2

− 2M2) + 2m2
e

]
− (2MM ′ − 2M2 − m2

e)(Q
2 + m2

e)
]

. (39)

(believe it or not, this is simplified!)
So in what follows, we will use the simpler hadron current, and use the matrix element as given

by Eq. (36).

3.1 Mandelstam Variables and Maximum Energies

As Ian shows in his report [4], it is useful to know the maximum energies of the decay products, and
that we can obtain them from the Mandelstam variables, s, t and u. First, let us look at s:

s = −(p − pν)2 = −(k + pe)
2 (40)

M2 − 2MEν + m2
ν = M ′2 + 2E′Ee − 2~k · ~pe + m2

e

Eν =
1

2M

(

M2 + m2
ν − M ′2 − m2

e − 2E′Ee + 2~k · ~pe

)

(41)

The maximum neutrino energy, comparable to Ian’s [4] Eq. (9), is obtained by setting ~k = ~pe = 0,
E′ = M ′ and Ee = me:

Emax
ν =

M2 + m2
ν − (M ′ + me)

2

2M
. (42)
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The maximum recoil energy can be derived from the t variable, which is just the negative square
of the momentum transfer:

t = −(p − k)2 = −(pe + pν)2 (43)

M2 − 2ME′ + M ′2 = m2
e + m2

ν + 2EeEν − 2~pe · ~pν

E′ =
1

2M

(
M2 + M ′2 − m2

e − m2
ν − 2EeEν + 2~pe · ~pν

)
. (44)

This has a maximum of (setting ~pe = ~pν = 0, Ee = me and Eν = mν):

(E′)max =
M2 + M ′2 − (me + mν)2

2M
. (45)

Finally, we get the β’s energy from the u variable:

u = −(p − pe)
2 = −(k + pν)2 (46)

M2 − 2MEe + m2
e = M ′2 + 2E′Eν − 2~k · ~pν + m2

ν

Ee =
1

2M

(

M2 + m2
e − M ′2 − m2

ν − 2E′Eν + 2~k · ~pν

)

, (47)

which has a maximum of (setting ~k = ~pν = 0, E′ = M ′ and Eν = mν):

Emax
e =

M2 + m2
e − (M ′ + mν)2

2M
(48)

and let us define, for a massless neutrino:

A◦ ≡ Emax
e (mν = 0) =

M2 + m2
e − M ′2

2M
(49)

Of course, as with the maximum β energy, all of these expressions agree with Ian’s report [4] if
we set mν = 0. Note, however, how the symmetry of Eqs. (42), (45) and (48) is made more apparent
when the neutrino is not considered massless.

3.2 Integrations

Integrating Eq. (38) over d3~k using the δ3-function we get:

Γ =

∫
G2

F |〈Mfi〉|2
(2π)54ME′

d3~pe

2Ee

d3~pν

2Eν
δ(M − E′ − Ee − Eν). (50)

We will now attack the integration over the unobserved neutrino energy using the δ-function.
We start by defining a function to be its argument:

f(Eν) = M − E′(Eν) − Ee − Eν , (51)

so that we can use the following property of the δ-function to do the integration over dEν :
∫

δ [f(Eν)] =

∫
1

|f ′(En
ν )| δ(Eν − En

ν ), (52)

where En
ν are the roots of the equation f(Eν) = 0.

As made obvious in Eq. (51), the recoil energy is a function of the neutrino’s energy, and therefore
it’s momentum. So, let’s put it in terms of pν :

E′ =
√

k2 + M ′2, ~k = ~pe + ~pν (53)

=
√

(~pe + ~pν)2 + M ′2

= [p2
e + p2

ν + 2pepν cos θeν + M ′2]1/2, (54)

so that the derivative of E′ with respect to Eν is

d

dEν
E′ =

1

6 2E′ (6 2pν+ 6 2pe cos θeν)
dpν

dEν

=
(pν + pe cos θeν)Eν

pνE′ , (55)
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where we used dpν

dEν
= Eν

pν
. The derivative of f(Eν) is therefore:

f ′(Eν) = −
(

1 +
Eν(pν + pe cos θeν)

pνE′

)

, (56)

so that

1

|f ′(Eν)| =
pνE′

pνE′ + Eνpν + Eνpe cos θeν

=
E′

E′ + Eν + Eν

pν
pe cos θeν

=
M − Ee − Eν

M − Ee + Eν

pν
pe cos θeν

(57)

≈ 1 − 1

M

(

Eν + Eν

pν
pe cos θeν

)

.

Now, we need to find the roots of Eq. (51), En
ν . It is at this point that allowing a massive

neutrino complicates matters beyond what I have considered. The problem comes from the ~pν

term in Eq. (44). I think Ian ends up saying that if the neutrino isn’t massless, one needs to do a
derivation akin to that of Koefed-Hanson [5], which is pretty messy . . .

So, taking Eν = pν and dropping terms of order 1/M2 and 1/M ′2, we substitute Eq. (44) into
Eq. (51) to get:

f(En
ν ) = 0 = M − Ee − En

ν − M2+M ′2−m2

e−2EeEn
ν +2pe cos θeνEn

ν

2M

En
ν

[

1 + 1
2M

(
2pe cos θeν − 2Ee

)]

= M − Ee − 1
2M

(
M2 + M ′2 − m2

e

)

En
ν

1
M

(
M − Ee + pe cos θeν

)
= 1

2M

(
6 2M2 − M2/ − M ′2 + m2

e

)
− Ee

En
ν =

A◦ − Ee
1
M (M − Ee + pe cos θeν)

En
ν =

M(A◦ − Ee)

M − Ee + pe cos θeν
(58)

≈ (A◦ − Ee)
[

1 +
1

M
(Ee − pe cos θeν)

]

.

At this point, I’d just like to point out the comparison of this expression (which is the same as
Ian Towner’s Eq. 20 [4]) to that of Eq. 2.12 in Ortiz’s thesis [6]:

(En
ν )Ortiz =

M2 − (M ′ + me)
2 + m2

e − 2MEe

2(M − Ee + pe cos θeν)
(59)

=
M2 − M ′2 + m2

e − 2MEe

2(M − Ee + pe cos θeν)
− 2meM

′ + m2
e

2(M − Ee + pe cos θeν)

= En
ν − me(2M

′ + me)

2(M − Ee + pe cos θeν)
. (60)

Since I derived Ian’s expression from scratch and understand each step, I believe it is correct, and
not Ortiz’s which is decidedly different. The fact that they differ essentially by the electron’s mass
cannot be coincidental . . . .

Now we finish evaluating the decay rate . . . from Eq. (38),

Γ =

∫

dEedΩedΩν
G2

F

(2π)5

[

1 − En
ν + pe cos θeν

M

]

pn
ν En

ν peEe
|〈Mfi〉|2

16ME′EeEν
. (61)
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Let us evaluate the terms involving En
ν and simplify:

[

1 − En
ν +pe cos θeν

M

]

(En
ν )2 =

[

1 − 1

M
(A◦ − Ee)

(
1 + Ee

M − pe cos θeν

M

)]

×
(
A◦ − Ee

)2
[

1 +
1

M
(Ee − pe cos θeν)

]2

≈ (A◦ − Ee)
2
[

1 − A◦ − Ee + pe cos θeν

M

][

1 +
2

M
(Ee − pe cos θeν)

]

≈ (A◦ − Ee)
2
[

1 − A◦ − Ee + pe cos θeν

M
+

2

M
(Ee − pe cos θeν)

]

= (A◦ − Ee)
2
[

1 +
3Ee − A◦ − 3pe cos θeν

M

]

, (62)

so that Eq. (61) becomes:

Γ =

∫

dEedΩedΩν
G2

F

(2π)5
peEe(A◦ − Ee)

2

[

1 +
3Ee − A◦ − 3pe cos θeν

M

]

|〈Mfi〉|2
16ME′EeEν

. (63)

3.3 The Differential Decay Rate

We’ve done everything now. All that is left is to put our expression for |〈Mfi〉|2, Eq. (36), into the
decay rate, Eq. (63). Including the Fermi function, which is briefly described in the next section,
the differential decay rate for a pure Fermi β+ transition including recoil-order corrections (but not
massive neutrinos or radiative corrections) is:

d5Γ

dEedΩedΩν
=

G2
F

(2π)5
peEe(A◦ − Ee)

2

[

1 +
3Ee − A◦ − 3pe cos θeν

M

]

× 1

16ME′EeEν
8M(E′ + M ′)EeEνξ

[

1 + a
~pe · ~pν

EeEν
+ be

me

Ee

]

F (Ee, Z
′, R)

d5Γ

dEedΩedΩν
=

G2
F

(2π)5
peEe(A◦ − Ee)

2

[

1 − A◦ − 3(Ee − pe cos θeν)

M

][

1

2

(

1 + M ′

E′

)
]

× ξ

[

1 + a
pe

Ee
cos θeν + be

me

Ee

]

F (Ee, Z
′, R). (64)

3.4 Massive ν’s

The decay rate, Eq. (64), is only valid for mν = 0, but we need some sort of expression that includes
it for M. Trinczek’s analysis [7]. Consider Eq. (4.20) of reference [8]:

dΓ

dEe
∝ F (Ee, Z

′, R)peEe

N∑

i=1

|Uei|2
[

Emax
e (0) − Ee

]2

×
[

1 − m2
νi

[
Emax

e (0) − Ee

]2

] 1

2

Θ
(
Emax

e (mνi
) − Ee

)
(65)

where Θ(x) = 1 if x > 0 (otherwise zero) is the usual step function, Emax
e (mν) is given by Eq. (47),

and Uei is the mixing strength of an electron neutrino with that of any of N massive ν’s; this is
defined by relating the weak eigenstates, νj , (j = 1, 2, . . . , N) to the physical νi (i = e, µ, τ, . . .):

νi =
∑

j

Uijνj (66)

In the case of an electron-neutrino mixing with one type of heavy neutrino (N = 2), we get a 2 × 2
matrix which can be characterized by one parameter; can define a mixing angle, θ:

(
νe

νH

)

=

(
cos θ sin θ
− sin θ cos θ

)(
ν1

ν2

)

, (67)
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or, wee can define UeH ≡ sin θ so that:
(

νe

νH

)

=





√

1 − |UeH |2 UeH

−UeH

√

1 − |UeH |2





(
ν1

ν2

)

. (68)

Thus we get the decay rate:

F (Ee, Z
′, R)peEe

[
A◦ − Ee

]2

if Ee ≥ Emax
e (mνH

) (69a)
dΓ

dEe
∝






F (Ee, Z

′, R)peEe

[
A◦ − Ee

]2

[

(
1 − |UeH |2

)
+ |UeH |2

√

1 − m2

νH

(A◦−Ee)2

]

if Ee < Emax
e (mνH

) (69b)

where we have substituted A◦ ≡ Emax
e (mνH

= 0).
Going back to the start of §3.2 (integrating the decay rate), the δ-function in Eq. (50) is simple

to solve if we neglect recoil-order corrections; it is simply given by dropping the 1/M term in the
approximation of Eq. (58):

Eν = A◦ − Ee. (70)

Now we define the magnitude of the neutrino’s momentum as:

|~pν | =
√

E2
ν − m2

ν , (71)

which is true whether mν = 0 or not. We can then use just one (i.e. simple!) expression for the
differential decay rate, namely (dropping the mixing strength for the moment):

d5Γ(mν)

dEedΩedΩν
≡ G2

F

(2π)5
peEe |~pν |Eν F (Ee, Z

′, R) ξ

[

1 + a
~pe · ~pν

EeEν

+ be
me

Ee
+ bν

mν

Eν
+ beν

memν

EeEν

]

, (72)

(the parameters bν and beν are included for generality but should be set to zero, and experiments
limit 0 ≤ |be| < 0.007). The only sublety is in how we interpret it, and when we include a neutrino
mass. Breaking up the problem into two energy regimes (i.e. whether mixing is allowed energetically
or not):

1. If Ee ≥ Emax
e (mνH

), then no mixing can occur and the decay rate is:

d5Γmassive

dEedΩedΩν
=

d5Γ(mν = 0)

dEedΩedΩν
(73)

and since mν = 0 in this case, |~pν | = Eν . Also in this case, one gets the familiar ave

c cos θeν

term in the angular distribution.

2. If Ee < Emax
e (mνH

), then we have a different probability function. On the basis of Eq. (69b),
the decay rate with no mixing is only affected by the global normalization (1− |UeH |2) factor,
and we add in the decay rate for events where mixing has occured:

d5Γmassive

dEedΩedΩν
=

d5Γ(mν = 0)

dEedΩedΩν
︸ ︷︷ ︸

massless ν

(
1 + |UeH |2

)
+

d5Γ(mν = mνH
)

dEedΩedΩν
︸ ︷︷ ︸

massive ν

|UeH |2. (74)

This says, then, that event generation of mν = 0 is calculated exactly the same as when
Ee ≥ Emax

e (mνH
), but the total decay rate in this case contains additional strength to generate

massive ν’s; the expression is the same as for mν = 0, but |~pν | 6= Eν and the rate is supressed
by the square of the mixing strength, |UeH |2.

As far as my MC is concerned, the decay rate was implemented in the following way: first check
if decay allows mixing energetically. If it does not, then just generate a mν = 0 event. If mixing can
occur, then calculate the decay rate for mν = 0 and compare it to a randomly generated number
between 0 and the maximum decay rate (which includes both terms in Eq. (74); calculated upon
initialization). If the random number is less than the decay rate, generate a mν = 0 event; otherwise,
check if the random number is less than the sum of the decay rates of the mν = 0 and mν = mνH

cases. If it is, then generate an event with mν = mνH
(otherwise start all over).
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4 The Fermi Function

The “traditional” function includes relativistic effects, but treats the nucleus as infinitely massive,
evaluates the integrals only at the nuclear surface, R, and does not include screening effects. With
γ =

√
1 − α2Z ′2, α = e2/4π and η = ±Ee/pe, it is given by:

F (Ee, Z
′, R) = (2γ + 1)(2peR)2(γ−1) eπη |Γ(γ + iη)|2

|Γ(1 + 2γ)|2 , (75)

where Z ′ refers to the the daughter nucleus and η is negative for β+ decays. The nuclear radius can
be given in two ways, the simplest being the well known:

R = 1.2A1/3 fm. (76)

However, if the root-mean-square (RMS) charge radius, RRMS, is known, it is better to assume the
charge is homogeneously distributed within the spherical nuclear volume so that:

R2 =
5

3
R2

RMS. (77)

It seems a waste of time to retype the lengthy results of Wilkinson’s parameterizations, so the
reader is referred to [9]. Let me just outline a couple of points one should know when reading this
paper:

• He works in units where me = ~ = c = 1, i.e.

W = Ee/me, (78a)

W◦ = A◦/me, (78b)

and p =
√

W 2 − 1. (78c)

• His quote that “R = 2.5896 × 10−3 × R [fm]” is simply the conversion:

R [unitless] =
me

~c
R [fm]. (79)

• He does not include screening effects, but this is can be included on the basis of the simple
Eq. 6 in [10].

• I have not looked closely at [11]; I really should one day . . .

Figure 2 shows a plot of the Fermi functions with differing amounts of corrections applied.
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Figure 2: Comparison of corrections to the traditional Fermi function for β+ decay.
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