Virtual States in the Complex Scaling Method

Kiyoshi Katō

Nuclear Data Center, Hokkaido University, Sapporo, Japan

SOTANCP4, Galveston, US
May 13-18, 2018
1. Cross Sections just above Thresholds

◆ Nuclear reaction cross sections observed around threshold energies provide us with interesting information about nuclear cluster structures. ("Ikeda’s threshold rule")

◆ Therefore, it is important to investigate its origin of the cross section observed just above threshold carefully.

Outline

• Several photodisintegration cross sections
• The first $\frac{1}{2}^+$ state in 9Be and photodisintegration
• Virtual state in complex scaling method
• Cross sections of virtual and resonant states
Coulomb breakup reaction of ^{11}Be

No resonant state

One neutron halo structure in the ground state of ^{11}Be

Coulomb breakup reaction of 6He

(1) The result supports the sequential decay: 6He $\rightarrow ^5$He(3/2$^-$)+n \rightarrow 4He+n+n.

(2) The n-n virtual-state correlations in final state has an important effect on the breakup cross section.
Coulomb breakup reaction of 11Li

(1) Both spectra for core-n and n-n subsystems show sharp peaks at a very low-energy region.
(2) These peaks come from the virtual states of 10Li and n-n.
(3) The breakup process of 11Li is dominated by 9Li-n and n-n FSI’s which cause the virtual states.

2. Photodisintegration of 9Be

Photodisintegration cross section of 9Be(γ, n)8Be.

C.W. Arnold et al. PRC85, 044605 (2012)

H. Utsunomiya et al. PRC92, 064323 (2015)
From this observed cross section peak, we cannot immediately conclude the existence of resonances (ex. Coulomb breakup cross sections in neutron halo nuclei).

We investigated whether or not this peak is caused by the $\frac{1}{2}^+$ resonant state in 9Be applying the complex scaling method to an $\alpha+\alpha+n$ model.

$\alpha+\alpha+N$ calculations

![Eigenvalue distribution of the $1/2^+$ state](image)

No resonance

M. Odsuren et al. PRC92, 014322 (2015)
Complex scaling Method

0. Coordinates

\[U(\theta) : \quad r \to re^{i\theta}, \quad k \to ke^{-i\theta} \]

1. Wave function

\[U(\theta)\psi(r) = e^{\frac{3i\theta}{2}}\psi(re^{i\theta}) \]

2. Hamiltonian (Operator)

\[\hat{H}(\theta) = U(\theta)\hat{H}U^{-1}(\theta), \quad (\hat{O}(\theta) = U(\theta)\hat{O}U^{-1}(\theta)) \]

3. Eigenvalue Problem of \(H(\theta) \)

\[H(\theta)\Psi_\theta = E_\theta \Psi_\theta \]

The resonance wave function has a non-singular asymptotic behavior.

Very useful in investigation of many-body resonances and continuum states

Eigenvalue distribution of a many-body system

The peak observed above the threshold is understood to be originated from a virtual state of n+^8Be.

How to confirm it.

In the CSM, the virtual state cannot be solved as an isolate eigenstate.
Virtual state in Complex Scaling Method

To simulate relative motion of the $^8\text{Be}+\text{n}$ system

Hamiltonian

$$H = -\frac{\hbar^2}{2\mu} \nabla^2 + V(r),$$

Virtual state in Complex Scaling Method

$$V(r)=V_0\exp(-ar^2); \quad a = 0.16 \text{ fm}^{-2}$$

Complex scaling method (CSM)

$$\bar{r} \rightarrow \bar{r}e^{i\theta}, \quad \bar{k} \rightarrow \bar{k}e^{-i\theta},$$

$$H^\theta \Psi_{J^\pi}^\nu (\theta) = E^\nu \Psi_{J^\pi}^\nu (\theta).$$

$$\Psi_{J^\pi}^\nu (\theta) = \sum_{n=1}^{N} c_n^{J^\pi\nu} (\theta) \phi_n(r),$$

M. Odsuren et al., PRC95, 064305 (2017)
Energy level of the schematic two-body model

E\textsubscript{1} transition from 1^{-}_{1} to 0^{+}_{2} states

\[\sigma_{E\text{1}}(E_{\gamma}) = \frac{16\pi^3}{9} \cdot \left(\frac{E_{\gamma}}{\hbar c} \right) \cdot \frac{dB(E\text{1}, E_{\gamma})}{dE_{\gamma}} \]

\[dB(E\text{1}, E_{\gamma}) = -\frac{1}{\pi} \cdot \frac{1}{2J_{gs} + 1} \times \text{Im} \left[\sum_{\nu} \langle \hat{\Psi}_{J\pi}^{gs}\rangle \langle \hat{\bar{O}}^{\dagger}(E\text{1})\rangle \langle \hat{\Psi}_{J\pi}^{\nu}(\theta) \rangle \right] \]

\[\times \frac{1}{E - E_{\nu}^{\theta}} \langle \hat{\Psi}_{J\pi}^{\nu}(\theta) \rangle \langle \hat{\bar{O}}^{\theta}(E\text{1})\rangle \langle \hat{\Psi}_{J\pi}^{gs} \rangle \]

E\textsubscript{1} Photodisintegration Cross Section due to a Virtual state

\[\sigma_{E\text{1}}(E_{\gamma}) \text{ (mb)} \]

threshold \[E_{\gamma} \text{ (MeV)} \]
Virtual state in Complex Scaling Method

Scattering length

\[a_s = - \lim_{k \to 0} \tan \delta^N_\theta (E)/k, \]

Phase shift

\[\Delta(E) = \frac{1}{\pi} \frac{d\delta(E)}{dE}. \]

Continue level density

\[\Delta(E) = \rho(E) - \rho_0(E) \]

Level density

\[\rho(E) = \int \delta(E - E')dE' = -\frac{1}{\pi} \text{Im} \text{Tr} \left[\frac{1}{E - H} \right] \]

\[\rho_0(E) = -\frac{1}{\pi} \text{Im} \text{Tr} \left[\frac{1}{E - H_0} \right] \]

\(V_0 \leq -1.43 \text{ MeV}, \quad a_s > 0 \Rightarrow \text{Bound state} \)

\(V_0 \geq -1.42 \text{ MeV}, \quad a_s < 0 \Rightarrow \text{Virtual state} \)
V₀ = -1.43 MeV

δ(E=0) = π (Levinson theorem)
V₀ = -1.42 MeV

Peak value of phase shift is π/3 approximately

Extraction of the virtual state contribution from difference between CLD’s for V₀ = -1.43 MeV and -1.42 MeV.

\[\Delta(E:-1.43) = \delta(E - E_{BS}) + \Delta_C(E:-1.43) \]

\[\Delta(E:-1.42) = \Delta_{VS}(E) + \Delta_C(E:-142) \]
If $\Delta_C(E:-143) \approx \Delta_C(E:-142)$

CLD of the virtual state

$\Delta_{VS}(E) = \Delta(E:-142) - \Delta(E:-143)$

$\propto \frac{1}{E - E_v}$.

We can evaluate E_v from Δ_{VS}

$E_v \approx -0.001$ MeV

Ref. $E_v = -4.97 \times 10^{-6}$ MeV

Phase shift of the virtual state

$\delta_{virt}(E) = \pi \int_0^E \Delta_{virt}(E')dE'$

It does not reach π, and its maximum is smaller than $\pi/2$.
Origin of the peak at energies above threshold

\[
\frac{dB(E_1, E)}{dE} = -\frac{1}{\pi} \frac{1}{2J_{gr} + 1} \text{Im} \sum \left\langle \tilde{\Psi}_{J_{gr}}^{\theta \theta} \left| (\hat{O}^{\theta} (E_1)) \dagger \right| \Psi_{J_{gr}}^{\theta \theta} \right\rangle \frac{1}{E - E_{\theta \theta}^{\theta}} \left\langle \tilde{\Psi}_{J_{gr}}^{\theta \theta} \left| \hat{O}^{\theta} (E_1) \right| \Psi_{J_{gr}}^{\theta \theta} \right\rangle
\]

Matrix elements Level density

Level Density (N=30 and 60)

Level Density \(\rho(E) \)

Matrix Elements \(M^2 \) (N=50)

Matrix elements

E1 Strength
Shape of the peak of virtual and resonant states

Virtual state changes to Resonant state by switching on a barrier potential at a large distance

\[V(r) = V_0 \exp(-ar^2) + V_2 \exp(-br^2) \]

where:
- \(a = 0.16 \text{ fm}^{-2} \)
- \(b = 0.01 \text{ fm}^{-2} \)

The strength may be changed slightly, but the shapes of peaks in the E1 photo-disintegration are very similar for virtual and resonant states.
As the resonance position is far from the threshold energy, the shape of the cross section peak becomes different from that of the virtual state case.

\[V(r) = -1.42 \exp(-0.16r^2) + V_2 \exp(-0.01r^2) \]
4. Summary

- An enhancement of nuclear reaction cross sections just above the threshold does not necessarily mean the existence of a resonance.

- It has been a long standing problem, whether the cross section peak of the photodisintegration observed just above the $^8\text{Be}+\text{n}$ threshold in ^9Be causes from the $^{1/2}+\text{ resonant state}$ or a neutron S-wave virtual.

- The complex scaled $\alpha+\alpha+n$ model shows no resonant states of $1/2^+$, but reproduces the observed peak of the $E1$ strength due to a neutron S-wave virtual state of $^8\text{Be}(\sigma^+)+\text{n}$.

- Using a schematic two-body model simulating the $^8\text{Be}+\text{n}$ structure in ^9Be, the $E1$ photodisintegration cross sections have been investigated for the cases of virtual and resonant states.

- It is shown that the virtual state giving a sharp peak in the photodisintegration cross section can be extracted from the continuum level density in CSM.

- The peak shape due to the virtual state is very similar to that of the resonance state. Therefore, from the cross section shape, it is difficult to distinguish whether the origin of the peak structure is virtual or resonant state.
Thank you!

Collaborators

Myagmarjav Odsuren: Nuclear Research Center, National University of Mongolia, Ulaanbaatar,
Yuma Kikuchi: Department of Physics, Osaka City University, Osaka
Hiroshi Masui: Information Processing Center, Kitami Institute of Technology, Kitami
Takayuki Myo: General Education, Faculty of Engineering, Osaka Institute of Technology