Cluster formation in low- and high-lying states —Cluser structures in ³⁵CI—

TANIGUCHI Yasutaka

National Institute of Technology, Kagawa College

SOTANCP4 May 13–18, 2018

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Cluster structures in nuclei

- Cluster structure is important in nuclei.
- Cluster transfer/capture/decay reactions, and so on.
- Nucleosynthesis.

- What kind of cluster structures develop?
- What are excitation energies of cluster states?

Threshold energy rule

⁸ Be	¹² C	ю	²⁰ Ne	²⁴ Mg	²⁸ Si	³² S
8	(7,27)	0000 (14,44)	(19,17)	(28,48)	(38.46)	(45.41)
	C	(7.16)	(11.89)	(C)000 (21.21)	(31.19)	(38.14)
		0	(4,73)	(14.05) ©© (13.93)	(24.03) (0000 (23.91)	(30.96) (00000 (30.86)
			Ne	(9.32)	(1929) OC (16,75)	(Ne) (26,25) (23,70)
					(M)00	(NgC) (18.97) (MgC) (16.93)
					(9.98)	(16.54)
	(MeV unit)				Si	(5.95)
						\$

Threshold energy rule

Cluster structures develop in excited states whose excitation energies are similar to threshold energies of the cluster decay.

Ikeda diagram (1968)

Violation of the threshold energy rule

- In *p*-shell region, the threshold energy rule works well.
- In ⁴⁰Ca, excitation energy of the lowest α-cluster state are lower than α-threshold energy.

Deformed states in ³⁵Cl

[A. Bisoi et al, Phys. Rev. C 88, 034303 (2013)]

- A negative-parity deformed band was observed by a γ-spectroscopy experiment.
- It is suggested that this deformed states have α-³¹P cluster structure with no direct evidence or theoretical calculation about α-clustering.

- Structure of the negative-parity deformed band.
- α-³¹P and t-³²S clustering in low- and high-lying states.

Wave function

Deformed-basis antisymmetrized molecular dynamics (AMD) wave function $|\Phi\rangle$: Slater determinant of Gaussian wave packets that can deform.

$$\begin{split} \Phi \rangle &= \hat{\mathcal{A}} \left| \varphi_1, \ \varphi_2, \cdots, \varphi_A \right\rangle, \\ \varphi_i &\propto \exp \left[-(\mathbf{r} - \mathbf{Z}_i) \cdot \mathsf{M}(\mathbf{r} - \mathbf{Z}_i) \right] \sigma_i \tau_i. \end{split}$$

Cluster structure

Energy variational calculation with a constraint potential

Parameters in wave functions are determined by energy variational calculations with a constraint potential $V_{\rm cnst}$.

$$\delta \left[\left\langle \hat{P}^{\pi} \Phi \middle| \hat{H} \middle| \hat{P}^{\pi} \Phi \right\rangle + V_{\text{cnst}} \right] = 0$$

- V_{cnst} : quadrupole deformation parameter β (deformed structure) intercluster distance (α - and t-cluster structure)
- Effective interaction \hat{H} : Gogny D1S
- Conjugate gradient method.

Various correlations are taken into account such as intercluster motion, coupling of cluster and deformed structures, and so on.

β -energy curves

In negative-parity states, a local minimum with $3\hbar\omega$ excited configurations exists at $\beta\sim 0.4$.

Energies of negative-parity α -³¹P and t-³²S cluster structures.

- A smaller cluster exists on the long/short-axis for L/S-type.
- Short intercluster distance: Reflecting particle-hole configurations (L: 3ħω, S: 1ħω), same type states have similar energies.
- Long intercluster distance: Reflecting threshold energies $(E_{\alpha} = 7 \text{ MeV}, E_t = 18 \text{ MeV}), \alpha$ -cluster states have lower energy.

L type

Level scheme of ³⁵Cl

 The K^π = ¹/₂⁻ band corresponds to the observed negative-parity deformed band.

(Mol, B(E2), yrast)

• It has $3\hbar\omega$ excited deformed structure.

lpha- and t-cluster structure components $(J^{\pi}=rac{3}{2}^{-})$

- Some states contain large amounts of cluster components.
 - D: $K^{\pi} = \frac{1}{2}^{-} 3\hbar\omega$ excited deformed state
 - L: hn-L state
 - α : hn- α states
 - t: hn-t states

- (hn = higher-nodal)
- The hn-L/ α /t states do not contain deformed structure components.
 - $\Rightarrow \mathsf{cluster} \ \mathsf{states}$

lpha- and t-cluster structure components $(J^{\pi}=rac{3}{2}^{-})$

- The 3ħω deformed state contains similar amounts of L-type α- and t-cluster components.
- Short distance components are dominant. ⇒particle-hole configurations
- The hn-L states appear by excitation of intercluster motion in the $3\hbar\omega$ deformed state.

lpha- and t-cluster structure components $(J^{\pi}=rac{3}{2}^{-})$

- The hn-α and hn-t states have α- and t-cluster structures, respectively.
- \blacksquare Both of L- and S-type are contained. $\Rightarrow Weak$ coupling
- Threshold energies are important for excitation energies.
 - ${\scriptstyle \blacksquare } E_{\mathbf{x}}(\mathsf{hn-}\alpha) < E_{\mathbf{x}}(\mathsf{hn-t})$
 - Dominant components are around Coulomb barrier. = 🔊 ରାଜ

Conclusions

- Structures in ${}^{35}\text{Cl}$ are investigated focusing on α and t-cluster structures.
- The observed deformed band is reproduced in which α- and t- cluster structures are coupled.
- By excitation of intercluster motion, higher-nodal cluster states appear.
- Particle-hole configurations and threshold energy are important for clustering structure in low- and high-lying states, respectively.

Back Up

Deformed structures are obtained.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国▶ ▲□▶

Particle-hole configurations of L-type α -³¹P and t-³²S cluster structure

- L type α and *t*-cluster structure become $\underline{3\hbar\omega}$ excited configurations in small intercluster distance.
- sd-shell orbits in a ³²S cluster are fully occupied in the direction of the long axis.
- A ³¹P cluster has a proton hole at a *sd*-shell orbit in the direction of the long axis.
- Three nucleons in α and t clusters go into pf-shell when they are approaching to larger clusters.
 - $\Rightarrow 3\hbar\omega$ excited configurations