Linear-chain and gas-like structures in nuclei near ¹²C

Tadahiro Suhara (Matsue Coll. of Tech.)

2 α +2n($\sigma_{1/2}$)²(¹⁰Be), 2 α +2n+p($\sigma_{1/2}$)³(¹¹B), 3 α (¹²C), 3 α +Xn(¹³C, ¹⁴C, ¹⁶C)

Aim

 $2\alpha + 2n(\sigma_{1/2})^2(^{10}\text{Be})$

We want to find the proton-neutron dependence of gas-like and linear chain structures.

Method

```
β-γ constraint AMD+GCM
```

AMD(Antisymmetrized Molecular Dynamics) A wave function of A-body system

$$\Phi_{\text{AMD}} = \det[\varphi_1, \varphi_2, \dots, \varphi_n]$$

$$= \phi(\mathbf{Z}_i) \chi(\boldsymbol{\xi}_i)$$
spin at

 β - γ constraint AMD+GCM

Set of variational parameters

$$Z = \{\mathbf{Z}_i, \boldsymbol{\xi}_i\}$$

 $\{\mathbf{Z}_i : \text{center of Gaussian w ave packets} \ | \boldsymbol{\xi}_i : \text{spin direction} \}$

β - γ constraint AMD+GCM

Constraints

The quadrupole deformation (β , γ)

 β - γ constrained AMD+GCM

GCM (Generator Coordinate Method)

Wave function for the $J^{\pm}n$ state

$$\left|\Phi_{n}^{J\pm}\right\rangle = \sum_{K}\sum_{i}f_{n}\left(\beta_{i},\gamma_{i},K\right)P_{MK}^{J}\left|\Phi^{\pm}\left(\beta_{i},\gamma_{i}\right)\right\rangle$$

Hamiltonian

$$H^{\text{eff}} = \sum_{i} t_i - T_{\text{CM}} + \sum_{i < j} v_{ij}^{\text{central}} + \sum_{i < j} v_{ij}^{\text{LS}} + \sum_{i < j} v_{ij}^{\text{Coulomb}}$$

The central force : The Volkov No.2 (M=0.6, B=H=0.125) The LS force : The LS part of the G3RS (u=1600 [MeV])

+ parity states in ¹²C Structures of 0⁺ states

0+3: bent linear-chain

0+1: shell model-like

0⁺₂: various 3α configurations gas-like state

Shell-model-like

parity states in ¹¹B

Gas-like states and E0 transition strength in N=6

0⁺₁→0⁺₂

¹¹**B**

 $3/2^{-}_{1} \rightarrow 3/2^{-}_{3}$

 $M_p = 6.67 \text{ fm}^2$ $M_n = 6.60 \text{ fm}^2$

 $0^{+}_{1} \rightarrow 0^{+}_{3}$

 $M_p = 3.45 \text{ fm}^2$ $M_n = 6.68 \text{ fm}^2$

GCM calculation of 3α +n A bent linear chain structure appears near the 3α +n threshold ($3/2^{-2}$ state)

N. Furutachi and M. Kimura, Phys. Rev. C 83, 021303(R) (2011).

T. Yamada and Y. Funaki, Phys. Rev. C 92, 034326 (2015).

There are linear chain states but no gas-like state.

Excess neutrons stabilize the geometric structure. N. Itagaki, et al, PRL (2004).

Comparison with ¹⁰Be+ α resonant scattering exp. 3α+2n threshold 20.4 MeV 20 AMD calculation Present Work Suhara & En'yo [18] $E_{\rm ex}$ (MeV) J^{π} $E_{\rm ex}$ (MeV) $heta_{lpha}^2$ J^{π} θ_{α}^2 Present work Γ_{α} (keV) 0 19 3.5%14.21 (2^{+}) 17(5) $\hbar^2/2\Im = 0.19 \text{ MeV}$ 14.5045(14)4.5% 1^{-} 0^{+} 34(12)% 0^+ 16% 15.07760(250)15.118 Eex (MeV) 2^+ 9.1(27)% 2^+ 15% 16.22190(55)**16.0** 16.37 (4^+) 15(4)3.0%17 16.93 (2^+) 270(85)10.3%5.5%17.25190(45) (1^{-}) 18.02 (3^{-}) 31(19)1.3%16 9.4%18.63 5^{-} 72(48) 4^{+} 4^+ 9% 18.87 45(18)2.4(9)%19.215 H. Yamaguchi et al., Phys. Lett. B 766, 11 (2017). 14 θ_{α}^2 5 15 20 10 0 J(J+1)

Good agreement (energy and moment of inertia)

- The calculation qualitatively reproduces the experimental width.
- -Good candidate for the linear-chain state.

Structures in ¹⁶C

T. Baba, Y. Chiba, and M. Kimura, Phys. Rev. C 90, 064319 (2014).

Summary

Linear-chain and gas-like structures in nuclei near ¹²C

- •¹⁰Be, ¹¹B, and ¹²C have gas-like states of 2α +dineutron, 2α +t, and 3α structures, respectively (M_n (g.s \rightarrow gas state) are almost same values.)
- •There are 3α +Xn linear chain structures in neutronrich C isotopes universally. (Good agreement of theoretical and experimental results in ¹⁴C)
- Excess neutrons stabilize the linear chain structures, and therefore, these appear below the 3α+Xn threshold.
 When multiple excess neutrons are added, triangular structures of 3α clusters appear in low energy region.

Future plan

• Is there $3\alpha+2n(3\alpha+4n)$ gas-like state in ${}^{14}C({}^{16}C)$?