SOTANCP4 Galveston，TX May 14 （14－18）， 2018

Ab initio description of clustering phenomena in atomic nuclei by the Monte Carlo shell model

Takaharu Otsuka RIKEN，U．Tokyo，KU Leuven，MSU
Collaborators Toru Yoshida（RIST，CNS，U．Tokyo） Takashi Abe（CNS，U．Tokyo） Y．Tsunoda and N．Shimizu（CNS，U．Tokyo） James Vary \＆Pieter Maris（Iowa State U．）

This work has been supported by MEXT and JICFuS as a priority issue（Elucidation of the fundamental laws and evolution of the universe）to be tackled by using Post＇K＇Computer

Outline

1. Introduction
2. Monte Carlo Shell Model - Quick overview -
3. Be isotopes - Levels, molecular orbits and EO-
4. C isotopes - Hoyle state, AI-related method -
5. Summary

The clustering is one of the fundamental problems in physics.

Foundation from a certain underlying basis
Its contemporary version

Ab initio calculations on clustering aspects

- Green's Function Monte Carlo (GFMC) [Wiringa et al. 2000]
- No Core Full Configuration (NCFC) : [Cockrel et al. 2012]
- Lattice EFT : Hoyle state [Epelbaum et al. 2012]
- ab initio Monte Carlo Shell Model (MCSM)

This work -> clustering in Be and C isotopes

Molecular structure is added

${ }^{8} \mathrm{Li}\left(2_{1}{ }^{+}\right)$lab. frame density

FIG. 12: (Color online) The $y=0$ slice of the translationally-inv density for the same state is on the right. These densities were

Outline

1. Introduction
2. Monte Carlo Shell Model - Quick overview -
3. Be isotopes - Levels, molecular orbits and EO-
4. C isotopes - Hoyle state, AI-related method -
5. Summary

Two types of shell-model calculations

$$
\begin{aligned}
& \text { dim. }<\sim 10^{10} \\
& \text { Conventional Shell Model Direct diagonalization } \\
& \text { all|Slater determinants }
\end{aligned}
$$

For even bigger problem,
$H \approx\left(\begin{array}{lll}* & * & * \\ * & * & * \\ * & * & \cdot \\ \cdot & \cdot & \end{array}\right)$

Monte Carlo Shell Model
bases important for a specific eigenstate important basis vectors

Advanced Monte Carlo Shell Model (currently used)

Step 1 : stochastic generation of candidates of the n-th MCSM basis vector
 Shift randomly matrix elements of the matrix D.
(The very initial one can be a Hartree-Fock state.) Select the one producing the lowest $E(D) \quad$ (rate <0.1 \%)

Step 2 : polish D by means of the conjugate gradient (CG) method "variationally".

Example of MCSM calculation

N_{B} : number of adapted basis vectors (Slater determinants)

Extrapolation by

 Energy Varianceemployed in most of the calculations shown in this talk

MCSM (Monte Carlo Shell Model -Advanced version-)

1. Selection of important many-body basis vectors by quantum Monte-Carlo + diagonalization methods basis vectors: about 100 selected Slater determinants composed of "deformed" single-particle states
2. Variational refinement of basis vectors conjugate gradient method
3. Variance extrapolation method -> exact eigenvalues

+ innovations in algorithm and code (=> now moving to GPU)

K computer (in Kobe) 10 peta flops machine \Rightarrow Projection of basis vectors Rotation with three Euler angles with about 50,000 mesh points

Example : $8^{+68} \mathrm{Ni} 7680$ core $\times 14 \mathrm{~h}$

Dimension of the shell-model many-body Hilbert space

We apply this method to the no-core shell model.
$\rightarrow a b$ initio MCSM

M-scheme dimension in $N_{\text {shell }}$ truncation

No-core calculations

Extrapolation to infinite basis space in ab initio calculations
Energy eigenvalue at $N_{\text {shell }}=N$ is expressed empirically as

Energy eigenvalue depends also on

$$
\hbar \omega
$$

But, the eigenvalue in the infinite space should be independent of it, i.e., flatness.

Extrapolation with
$\mathrm{N}_{\text {shell }}=2-7(\boldsymbol{O})$
$\mathrm{N}_{\text {shell }}=3-7(\boldsymbol{\Delta})$
$N_{\text {shell }}=4-7(\Delta)$
c.f.) NCFC: -59.1(1) MeV

Extrapolated results to infinite $\mathrm{N}_{\max }$

MCSM: -59.3(1.0) MeV
$\left(\mathrm{N}_{\text {shell }}=3-7, \hbar \omega=20-35 \mathrm{MeV}\right)$

Comparison of MCSM ground-state energies with experiment

MCSM results are obtained using K computer and extrapolated to infinite space with optimum choice of the harmonic oscillator parameter.
Coulomb interaction is included perturbatively.
MCSM results show good agreements with experimental data up to ${ }^{12} \mathrm{C}$, slightly overbound for ${ }^{16} \mathrm{O}$, and clearly overbound for ${ }^{20} \mathrm{Ne}$.

Outline

1. Introduction
2. Monte Carlo Shell Model - Quick overview -
3. Be isotopes - Levels, molecular orbits and EO-
4. C isotopes - Hoyle state, AI-related method -
5. Summary

calculated with $h w=15 \mathrm{MeV}$, Nshell=6

B(E2) Exp:
${ }^{8}$ Be Datar et al. 2013 + estimate by GFMC
${ }^{10}$ Be McCutchan et al. 2009
${ }^{12}$ Be Imai et al. 2009

Exp : ${ }^{8} \mathrm{Be},{ }^{10} \mathrm{Be}$: Tilley et al., 2004 ${ }^{12} \mathrm{Be}$: Shimoura et al., 2003

These energy levels are obtained by MCSM process including the variance extrapolation to the exact values.

exact values
for this model space

Energy variance $\left(\mathrm{MeV}^{2}\right)$
Variance : $\left\langle\Delta H^{2}\right\rangle=\left\langle H^{2}\right\rangle-\langle H\rangle^{2}$

$$
\langle H\rangle=E_{0}+a\left\langle\Delta H^{2}\right\rangle+b\left\langle\Delta H^{2}\right\rangle^{2}+\ldots
$$

rotational experiment

MCSM result (diagonalization)
projection from MCSM basis vectors fixed for $\mathrm{J}=\mathrm{O}^{+}$

projection from MCSM basis vectors fixed for $\mathrm{J}=\mathrm{O}^{+}$ with amplitudes re-optimized for each J q moment axis alignment is made for \square and \square and only $\mathrm{K}=0^{+}$components are included

Evolution of α-clustering along the isotope chain

AMD: Y. Kanada-En'yo, Phys. Rev C68, 014319 (2003)
Cluster: M. Ito \& K. Ikeda, Rep. Prog. Phys. 77, 096301 (2014)

E2 \& E0 Transition strength of ${ }^{12} \mathrm{Be}$

Intrinsic density of MCSM eigenstate

$$
|\Phi\rangle=\sum_{i=1}^{N_{\text {basis }}} c_{i}\left|\Phi_{i}\right\rangle=\mathrm{c}_{1} \mathrm{Q}+\mathrm{c}_{2} \mathrm{Q}+\mathrm{c}_{3} \square+\mathrm{c}_{4}
$$

Laboratory frame
"Intrinsic" (body-fixed) frame

MCSM eigenstate : $|\Psi(D)\rangle=\sum_{n=1}^{N_{B}} c_{i} P^{J, \Pi}\left|\phi\left(D^{(n)}\right)\right\rangle$ with three axes of ellipsoid

For J^{π} projected states, individual orientations are not relevant.

$$
\left|\Psi_{B . A .}(D)\right\rangle=\left\{c_{1}+c_{2}+c_{3} /+c_{98}+c_{90}\right.
$$

For "intrinsic state" with physical significance, all basis states are rotated so that three axes of the ellipsoid are aligned (as a first modelling).

Cluster and Molecular structure of Be isotopes

Difference between $0^{+}{ }_{1}$ and $0^{+}{ }_{2}$ states of ${ }^{12} \mathrm{Be}$

Proton intrinsic density (Q-moment aligned)

protons in two clusters are more separated \square
$\sqrt[4]{0^{+}}$configurations different mixing
of π / σ orbit
configurations

Neutron intrinsic density (Q-moment aligned)

A possible modelling ?

$$
\begin{aligned}
& \psi\left(0^{+}{ }_{1}\right)=\phi\left[\pi^{4}\right] \cos \theta+\phi\left[\pi^{2} \sigma^{2}\right] \sin \theta \\
& \psi\left(0^{+}{ }_{2}\right)=\phi\left[\pi^{4}\right] \sin \theta-\phi\left[\pi^{2} \sigma^{2}\right] \cos \theta
\end{aligned}
$$

Outline

1. Introduction
2. Monte Carlo Shell Model - Quick overview -
3. Be isotopes - Levels, molecular orbits and EO-
4. C isotopes - Hoyle state, AI-related method -
5. Summary

Energy level \& transition strength of ${ }^{12} \mathrm{C}$

Expt.: P. Strehl 1970 THSR: Y. Funaki 2015
FMD: M. Chernykth 2007 AMD: Y. Kanada-En'yo 2007
$E_{g s}=-76.64 \mathrm{MeV}\left(\right.$ MCSM, JISP16, $\left.\mathrm{N}_{\text {shell }}=6, \mathrm{hw}=15 \mathrm{MeV}\right)$

Dendrogram of MCSM basis vectors for ${ }^{12} \mathrm{C}$
AI (Artificial Intelligence) : extraction of relevant information from "big data"
Dendrogram is used in "Cluster analysis": cluster structure extracted from a mass of different objects

Basis vectors are divided into 16 groups (in this case)

Overlap probability with the eigenstates : ${ }^{12} \mathrm{C}$

There is non-orthogonality among the MCSM basis vectors. Densities can be reduced due to cancellation among amplitudes.
$0^{+}{ }_{1}$: Concentrated in $14^{\text {th }}$ (3 clusters) $\& 15^{\text {th }}$ (compact shape) groups

$0^{+}{ }_{2}$: Scattered among many categories (essence of Hoyle state ?)

$0^{+}{ }_{3}$: Concentration in $6^{\text {th }} \& 7^{\text {th }}$ (linear shape) groups

Overlap probability with the eigenstates: ${ }^{12} \mathrm{C}$
There is non-orthogonality among the MCSM basis vectors. Densities can be reduced due to cancellation among amplitudes.
$0^{+}{ }_{1}$: Concentrated in $14^{\text {th }}$ (3 clusters) \& $15^{\text {th }}$ (compact shape) groups

$0^{+}{ }_{2}$: Scattered among many categories (essence of Hoyle state?)

$0^{+}{ }_{3}$: Concentration in $6^{\text {th }} \& 7^{\text {th }}$ (linear shape) groups

0	1	\cdots			0		\cdots		\cdots	\cdots	8		(0	9
0.12	0.02	0.17	0.26	0.13	0.54	0.38	0.00	0.10	0.19	0.13	0.00	0.08	0.01	0.33	0.06

Overlap probability with the eigenstate : ${ }^{14} \mathrm{C}$

- $\underline{0}^{+} \underline{1}$: shell-model like

0.02
0.0

- $\underline{0}^{+}{ }_{2}$: less density at center

$\mathrm{P}=0.01$	0.83	0.19	0.00	0.14	0.02	0.00	0.77	0.10
?	-		O	\bigcirc	0	C	-	O

Relavance to the crystalization (equilateral-triangular shape)? N. Itagaki et al., PRL92, 142501 (2004)

Summary

1. Ab initio MCSM is applied to Be and C isotopes with JISP16 interaction.
2. The emerging and evolution of the α clustering is seen without any assumption as a function of N as well as molecular structure.
3. Levels, E2, E0 and molecular properties of Be isotopes are described.
4. The intrinsic density profile is obtained by utilizing a unique feature (deformed Slater determinant) of MCSM.
5. The intrinsic shape of C is investigated in terms of the cluster analysis by the dendrogram. This is one of the AI techniques, and appears to be useful probably in many-body calculations with full of correlations. Various features of ${ }^{12} \mathrm{C}$ appear as a result of the calculation without any assumption, while mixings are always present.
6. Daejeon 16 interaction may improve the level scheme as JISP 16 may be at the edge of its applicability.

$E N D$

Thank you for your attention

