The importance of α-clustering in nuclear astrophysics

James deBoer University of Notre Dame SOTANCP4, Galveston, Texas

What kind of reactions am I talking about? Low mass nuclei (A<30)
Capture reactions

(α,γ) but also (p,γ)
(p,α)

- Low level densities
- Individual state(s) near threshold are critical (lkeda)

Reaction Rates

S-factor

Phenomenological *R*-matrix

- Provides basic framework to calculate cross sections
- Resonances and direct contribution strengths are put in *ad hoc*
- NEED!
 - Good understanding of the nuclear structure
 - Level structure
 - Reaction mechanisms
 - Accurate cross section data

What do you need to do an R-matrix fit?

- J^π′s
- Energies
- Partial widths
- Asymptotic
 Normalization
 Coefficients for
 subthreshold states
- Data for every decay path

What kinds of nucleosynthesis processes? •Big Bang (BBN)

•Carbon-Nitrogen-Oxygen (CNO) cycles

•Helium Burning

BBN

BBN

•³He(α,γ)⁷Be

Observed Cross Section: External Capture? Subthreshold State? Tail of broad high energy resonance?

Level structure

Tails of higher energy states

Observed Cross Section

Broad cluster states demand measurements on similar energy scales

External Capture

Observed Cross Section

Level structure

Two bound states in ⁷Be

- Cross section is external capture dominated (since the 1960's)
- Nollet (2001) and Neff (2011), internal contributions are significant
- α asymptotic normalization coefficients of both of these states have not been measured
- Largest sources of uncertainty

CNO cycle

Branch point reactions

Fig. 5.8 Representation of the four CNO cycles in the chart of the nuclides. Stable nuclides are shown as shaded squares. Each reaction cycle fuses effectively four protons to one ⁴He nucleus.

Christian Iliadis, Nuclear Physics of Stars

CNO cycles

•Direct reaction or broad resonance?

•¹⁵N(p,α)¹²C, ¹⁶OCN

•¹⁹F(p,α)¹⁶O, ²⁰Ne CN

α separation
energy

proton
separation
energy

¹⁵N(p,α)¹²C

Same for ${}^{19}F(p,\alpha){}^{16}O$ reaction that populates the ${}^{20}Ne$ compound nucleus. ¹⁵N(p,α)¹²C

¹⁵N(p,γ)¹⁶O

H. Lorentz-Wirzba thesis, Münster (1978)

Helium Burning

•12C(α,γ)16O

¹²C(α,γ)¹⁶O

Different Transitions for ${}^{12}C(\alpha,\gamma){}^{16}O$

Schürmann et al. (2012)

 $^{12}C(\alpha,\gamma)^{16}O$ Ground State

Subthreshold state ANCs

- Determined by
 - ¹²C(α, α)¹²C Scattering --- large uncertainty
 - ¹²C(α,γ)¹⁶O Capture --- large uncertainty
 - Beta delayed α emission of ${}^{\tt 16}{\rm N}$ --- inconsistent data
 - Sub-Coulomb α transfer ¹²C(⁶Li,d)¹⁶O and
 ¹²C(⁷Li,t)¹⁶O

• Theory calculations of ANCs are highly desired

6.05 MeV transition

6.05 MeV transition

Scattering is important too!

Feng et al. (1996)

Higher energy data is very important too!

Conclusion

- Phenomenological fits + theory calculations yield the very accurate cross section descriptions
 - Theory calculations
 - Level structure
 - Underlying reaction mechanisms
 - Accurate data for all open reaction channels

•NSF Phys-0758100 and Phys-1430152 (JINA)