Systematic investigation of the Hoyle-analog states in light nuclei.

V.S. Vasilevsky ¹, K. Katō ², N. Takibayev ³

¹Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
²Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo, Japan
³Al-Farabi Kazakh National University, Almaty, Kazakhstan

4th International Workshop "State of the Art in Nuclear Cluster Physics", Galveston, Texas, USA, May 13-18, 2018.

Outline

Introduction

- Motivations
- Hoyle state
- Three-cluster AMHHB Model

Theoretical analysis

- Hoyle states in light nuclei
- Hoyle-analog states in ¹¹B and ¹¹C
- Hoyle states in ¹⁰B
- Hoyle states in ⁹Be and ⁹B
- Shape of triangles
- Hoyle-analog states in light nuclei

Motivations

- Synthesis of light nuclei in stellar environment
 - Resonance states in three-cluster continuum
 - Nature of resonance states in three-cluster continuum
 - Hoyle-analog states

Inhomogeneous BBN reactions

Inhomogeneous BBN reactions involve reaction chains such as

¹ $H(n,\gamma)^{2}H(n,\gamma)^{3}H(d,n)^{4}He(t,\gamma)^{7}Li(n,\gamma)^{8}Li,$ ⁸ $Li(\alpha,n)^{11}B(n,\gamma)^{12}B(\beta^{-})^{12}C(n,\gamma)^{13}C,$

and

⁷
$$Li(n,\gamma)^{8}Li(n,\gamma)^{9}Li(\beta^{-})^{9}Be$$
, ⁷ $Li(^{3}He,p)^{9}Be$, ⁷ $Li(t,n)^{9}Be(t,n)^{11}B$,

C.A. Bertulani, T. Kajino. "Frontiers in nuclear astrophysics", Progr. Part. Nucl. Phys., 89, 56, 2016.

Hoyle state

Fred Hoyle and Hoyle state

Hoyle state

Synthesis of ¹²C. Hoyle state

$$\mathbf{3}\alpha \Rightarrow^{\mathbf{12}} \mathbf{C}^* \Rightarrow^{\mathbf{12}} \mathbf{C} + \gamma$$

F. Hoyle. "On Nuclear Reactions Occurring in Very Hot Stars. I. The Synthesis of Elements from Carbon to Nickel." Astrophys. J. Suppl., 1, 121, 1954.

¹²C. Hoyle state

- Hoyle state is the 0⁺ resonance state in ¹²C
- Energy of the Hoyle state is E = 0.4 MeV above the $\alpha + \alpha + \alpha$ threshold or E = 7.65 MeV above the ¹²C ground state
- Very small width of the Hoyle state $\Gamma = 8.5 \text{ eV}$, compare with width of the 0⁺ resonance state in ⁸Be $\Gamma = 5.57 \text{ eV}$
- F. Hoyle. "On Nuclear Reactions Occurring in Very Hot Stars. I. The Synthesis of Elements from Carbon to Nickel." Astrophysical Journal Supplement, vol. 1, p.121 (1954).
- M. Freer, H. O. U. Fynbo, "The Hoyle state in ¹²C", Prog. Part. Nucl. Phys., 78, pp. 1-23, 2014

¹²C. Hoyle state

Two quotations from F. Hoyle paper [1].

It was pointed out some years ago by Bethe [2] that effective element-building inside starts must proceed, in the absence of hydrogen, by triple collisions as a starting point:

$$3\alpha \to^{12} C + \gamma. \tag{1}$$

It is convenient to replace reaction (1) by

$$\alpha + \alpha \leftrightarrow^{8} Be, \quad {}^{8}Be + \alpha \rightarrow^{12} C + \gamma.$$
 (2)

This is a permissible step, since the lifetime of the unstable ⁸Be is appreciably longer than the time required for nuclear collision of two α particles; that is, longer than the α particle radius divided by the relative velocity.

H.A. Bethe. Phys. Rev., "Energy Production in Stars." 55, 434, 1939.

Hoyle state

Synthesis of ¹²C. Hoyle state

 $2\alpha \Rightarrow^{8} Be + \gamma, \quad \alpha +^{8} Be \Rightarrow^{12} C + \gamma$

The 0⁺ resonance in ⁸Be: *E*=91.8 keV, Γ = 5.57±0.25 eV, $\tau \approx 10^{-16}$ sec.

Synthesis of light nuclei in triple collision

General scheme

$$\mathbf{A_1} + \mathbf{A_2} + \mathbf{A_3} \Rightarrow \mathbf{A^*} \Rightarrow \mathbf{A} + \gamma,$$

where A^* denotes excited (resonance) state of a compound system. First step, excitation of resonance state

$$A_1 + A_2 + A_3 \Rightarrow A^*$$

Second step, transition from resonance to bound state $A^* \Rightarrow A + \gamma$.

•
$${}^{9}Be = \alpha + \alpha + n$$

• ${}^{9}B = \alpha + \alpha + p$
• ${}^{10}B = \alpha + \alpha + d$
• ${}^{11}B = \alpha + \alpha + {}^{3}H$
• ${}^{11}C = \alpha + \alpha + {}^{3}He$

The Algebraic Model for scattering with the Hyperspherical Harmonics Basis (AMHHB)

- V. Vasilevsky, A. V. Nesterov, F. Arickx, J. Broeckhove. *Phys. Rev. C*, vol. **63**, 034606 (16 pp), 2001.
- V. Vasilevsky, A. V. Nesterov, F. Arickx, J. Broeckhove. *Phys. Rev. C*, vol. **63**, 034607, 2001.
- V. Vasilevsky, A. V. Nesterov, F. Arickx, and J. Broeckhove. *Phys. Rev. C*, vol. **63**, 064604, 2001.
- J. Broeckhove, F. Arickx, P. Hellinckx, V. S. Vasilevsky, A. V. Nesterov. J. Phys. G Nucl. Phys., vol. 34, 1955, 2007.
- V. S. Vasilevsky, K. Katō, N. Zh. Takibayev. Phys. Rev. C, 96, 034322, 2017.

Alternative methods

Complex Scaling Method (K. Katō, et al)

T. Myo, Y. Kikuchi, H. Masui and K. Katō, "Recent development of complex scaling method for many-body resonances and continua in light nuclei", Prog. Part. Nucl. Phys., 79, 1, 2014.

- Antisymmetrized Molecular Dynamics (H. Horiuchi, Y. Kanada-En'yo, et al)
- Fermionic Molecular Dynamics (H. Feldmeier, T. Neff)
- Microscopic R-Matrix Method (D. Baye, P. Descouvemont)
- No-Core Shell Model (P. Navrátil, S. Quaglioni)

Three-cluster model and Hyperspherical Harmonics Method

- V. Vasilevsky, A. V. Nesterov, F. Arickx, J. Broeckhove. *Phys. Rev. C*, vol. **63**, 034606, 2001.
- Korennov, S. and Descouvemont, P. *Nucl. Phys. A*, **740**, 249, 2004.
- S. Quaglioni, C. Romero-Redondo, and P. Navrátil, *Phys. Rev. C*, 88, 034320, 2013.

Quest for the Hoyle-analog states

- Kanada-En'yo, Y. "Negative parity states in ¹¹B and ¹¹C and the similarity with ¹²C", *Phys. Rev. C*, **75**, 024302, 2007.
- Kanada-En'yo, Y. and Suhara, T. and Kobayashi, F., "Cluster states in ¹¹B, ¹¹C and ⁸He and their similarity to ¹²C", *J. Phys. Confe. Ser.*, **321**, 012009, 2011.
- Solution 3 Yamada, T. and Funaki, Y. " $\alpha + \alpha + t$ cluster structures and ${}^{12}C(0_2^+)$ -analog states in ${}^{11}B$ ", *Phys. Rev. C*, **82**, 064315, 2010.
- Yamada, T. and Funaki, Y. "Three-Body Cluster Structures and Hoyle-Analogue States in ¹¹B", *Progr. Theor. Phys. Suppl.*, **196**, 388, 2012.
- Y. Chiba, M. Kimura "Hoyle-analogue state in ¹³C studied with Antisymmetrized Molecular Dynamics", arXiv:1801.00562, 2018.

Three-cluster wave function

Wave function for three *s*-shell clusters in the *LS* coupling scheme:

$$\Psi^{J} = \widehat{\mathcal{A}} \left\{ \left[\Phi_{1} \left(A_{1} \right) \Phi_{2} \left(A_{2} \right) \Phi_{3} \left(A_{3} \right) \right]_{\mathcal{S}} f_{L} \left(\mathbf{x}, \mathbf{y} \right) \right\}_{J}$$

where

- $\Phi_{\nu}(A_{\nu})$ is a shell-model wave function for the internal motion of α -particle ($\nu = 1, 2, 3$) (fixed)
- f (x, y) is a wave function of inter-cluster motion (to be determined)
- $\widehat{\mathcal{A}}$ is the antisymmetrization operator.

Hyperspherical coordinates

Hyperspherical coordinates:
$$\{\mathbf{x}, \mathbf{y}\} \Rightarrow \{\rho, \Omega\}, \Omega = \{\theta, \widehat{\mathbf{x}}, \widehat{\mathbf{y}}\}$$

$$\rho = \sqrt{\mathbf{x}^2 + \mathbf{y}^2} \quad \text{hyper-radius,}$$
$$\widehat{\mathbf{x}} = \mathbf{x} / |\mathbf{x}|, \ \widehat{\mathbf{y}} = \mathbf{y} / |\mathbf{y}| \quad \text{unit vectors}$$
$$|\mathbf{x}| = \rho \cos \theta, \quad |\mathbf{y}| = \rho \sin \theta$$

Expansion of wave function

$$f_{L}(\mathbf{x}, \mathbf{y}) = \sum_{l_{x}, l_{y}} f_{l_{x}, l_{y}; L}(\mathbf{x}, \mathbf{y}) \left\{ Y_{l_{x}}(\widehat{\mathbf{x}}) Y_{l_{y}}(\widehat{\mathbf{y}}) \right\}_{L}$$
$$= \sum_{c} \psi_{c}(\rho) \mathcal{Y}_{c}(\Omega) = \sum_{c} \sum_{n_{\rho}=0}^{\infty} C_{n_{\rho}, c} R_{n_{\rho}, K}(\rho, b) \mathcal{Y}_{c}(\Omega)$$

Hyperspherical Harmonics

Here $c = \{K, I_x, I_y, L\}, \mathcal{Y}_c(\Omega)$ is a hyperspherical harmonic

$$\mathcal{Y}_{c}\left(\Omega
ight) = \chi_{\mathcal{K},l_{x},l_{y}}\left(heta
ight) \cdot \left\{\left. \mathbf{Y}_{l_{x}}\left(\widehat{\mathbf{x}}
ight) \left. \mathbf{Y}_{l_{y}}\left(\widehat{\mathbf{y}}
ight)
ight\}_{L}
ight.$$

and $R_{n_{\rho},K}(\rho, b)$ is a six-dimensional oscillator function

$$egin{aligned} & \mathcal{R}_{n_{
ho},\mathcal{K}}\left(
ho,b
ight)=(-1)^{n_{
ho}}\,\mathcal{N}_{n_{
ho},\mathcal{K}}r^{\mathcal{K}}\exp\left\{-rac{1}{2}r^{2}
ight\}L_{n_{
ho}}^{\mathcal{K}+3}\left(r^{2}
ight),\ & r=
ho/b,\quad\mathcal{N}_{n_{
ho},\mathcal{K}}=b^{-3}\sqrt{rac{2\Gamma\left(n_{
ho}+1
ight)}{\Gamma\left(n_{
ho}+\mathcal{K}+3
ight)}}, \end{aligned}$$

and b is an oscillator length.

Hyperspherical Harmonics

Basis of the Hyperspherical Harmonics

$$\Psi_{J} = \sum_{c} \widehat{\mathcal{A}} \{ \Phi_{1}(A_{1}) \Phi_{2}(A_{2}) \Phi_{3}(A_{3}) \psi_{c}(\rho) \mathcal{Y}_{c}(\Omega) \}$$
$$= \sum_{c} \sum_{n_{\rho}=0}^{\infty} C_{n_{\rho},c} | n_{\rho}, c \rangle$$

where $\{C_{n_{\rho},c}\}$ is a wave function in the oscillator representation, $|n_{\rho}, c\rangle$ is a three-cluster oscillator function

$$|n_{
ho}, c
angle = \widehat{\mathcal{A}}\left\{\Phi_{1}\left(\mathcal{A}_{1}
ight)\Phi_{2}\left(\mathcal{A}_{2}
ight)\Phi_{3}\left(\mathcal{A}_{3}
ight)\mathcal{R}_{n_{
ho},K}\left(
ho, b
ight)\mathcal{Y}_{c}\left(\Omega
ight)
ight\}$$

Oscillator basis and linear algebraic equations

The many-particle Schrödinger equation

$$\left(\widehat{H}-E
ight)\Psi=0$$

in oscillator representation

$$\sum_{\widetilde{c}}\sum_{\widetilde{n}_{\rho}=0}^{\infty}\left[\left\langle n_{\rho},c\left|\widehat{H}\right|\widetilde{n}_{\rho},\widetilde{c}\right\rangle - E\left\langle n_{\rho},c|\widetilde{n}_{\rho},\widetilde{c}\right\rangle\right]C_{\widetilde{n}_{\rho},\widetilde{c}} = 0$$

Numerical realization

$$\sum_{\widetilde{c}=1}^{N_{c}}\sum_{\widetilde{n}_{\rho}=0}^{N}\left[\left\langle n_{\rho},c\left|\widehat{H}\right|\widetilde{n}_{\rho},\widetilde{c}\right\rangle -E\left\langle n_{\rho},c|\widetilde{n}_{\rho},\widetilde{c}\right\rangle\right]C_{\widetilde{n}_{\rho},\widetilde{c}}=0$$

plus proper boundary conditions (Details in V. Vasilevsky et al. Phys. Rev. C, vol. 63, 034606, 2001).

Main stages of our calculations

By solving the system of linear equations, we obtain the scattering S matrix

$$\left\| S_{c,\widetilde{c}} \right\|,$$

where $c, \tilde{c} = 1, 2, ..., N_{ch}$

- By analyzing behavior of the S matrix as a function of energy, we extract parameters of resonance states.
- We study resonance wave functions in coordinate and oscillator representations

We are going to search for the Hoyle-analog states in light nuclei

Reference	Nucleus	Configuration
Phys. Atom. Nucl., 77, 555, 2014	⁹ Be	$\alpha + \alpha + \mathbf{n}$
	⁹ B	$\alpha + \alpha + p$
Phys. Rev., C96, 034322, 2017	⁹ Be	$\alpha + \alpha + \mathbf{n}$
	⁹ B	$\alpha + \alpha + p$
Ukr. J. Phys., 59, 1065, 2014	¹⁰ B	$\alpha + \alpha + d$
Ukr. J. Phys., 58, 544, 2013	¹¹ <i>B</i>	$\alpha + \alpha + {}^{3}H$
	¹¹ C	$\alpha + \alpha + {}^{3}He$
Phys. Rev., C85, 4607, 2012	¹² C	$\alpha + \alpha + \alpha$

Wave function in Oscillator representation.

Condensed information about wave function

$$W_{sh}\left(\textit{N}_{sh}
ight) = \sum_{\textit{n}_{
ho}, \textit{K} \in \textit{N}_{sh}} \left|\textit{C}_{\textit{n}_{
ho},\textit{K}}
ight|^2, \quad \textit{N}_{sh} = 0, 1, 2, \dots$$

Inter-cluster distances R₁ and R₂

Normalization condition:

$$\left\langle \Psi_{E,J} | \Psi_{\widetilde{E},J} \right\rangle = \sum_{n_{\rho},c} C_{n_{\rho},c}^{E,J} C_{n_{\rho},c}^{\widetilde{E},J} = \delta \left(E - \widetilde{E} \right).$$

Theoretical set-up

Input parameters

NN potential

Minnesota potential, modified Hasegawa-Nagata potential

Basis

Hypermomentum: $K_{max} = 14$ for even parity states Hypermomentum: $K_{max} = 13$ for odd parity states Hyperradial excitations: $n_{\rho} \le 100 ~(\sim 200 ~\hbar\Omega)$

Adjustable parameters

Oscillator length b: $E_{th}(b) = min\{E(A_1) + E(A_2) + E(A_3)\}$ Majorana parameter *m* of NN potential: $E_{GS}(m) = E_{GS}^{(Exp.)}$

Hoyle state and other resonance states in ^{12}C .

	CSN	1[1]	AMHHB [2]		
J^{π}	<i>E</i> , MeV	Г, keV	<i>E</i> , MeV	Γ, keV	
0+	0.76	2.4	0.68	2.9	
	1.66	1480	5.16	534	
2+	2.28	2.28 1100		10	
	5.14 1900		3.17	280	
	6.82	240	5.60	0.6	
1-	3.65	0.30	3.52	0.21	

C. Kurokawa, K. Katō. Nucl. Phys. A, 792, 87, 2007.

V. Vasilevsky, et al. Phys. Rev. C, 85, 034318, 2012.

Wave function of the Hoyle state (E= 0.39 MeV, Γ = 1 eV) in ¹²C.

T. Neff, H. Feldmeier. Few-Body Syst., 45, 145, 2009.

Theoretical analysis

Wave functions of the 0⁺ resonance states in ¹²C

First resonance, Γ=1 eV

Second resonance, F=692 keV

Theoretical analysis

Wave functions of the 0⁺ resonance state in ¹²C

AMHHB

CSM: C. Kurokawa, K. Kato. Nucl. Phys. A, 792, 87, 2007.

V.S. Vasilevsky (BITP)

Hoyle-analog states

CSM

Theoretical analysis

Wave functions of the 0⁺ and 1⁻ resonance states in ¹²C

 0^+ state, $\Gamma=1 eV$

1⁻ state, Γ=979 eV

Candidates for the Hoyle state

The Hoyle state

Criteria

2

Resonance state which is close to three-cluster threshold (*E* is small)

Resonance state with very small width (Γ is small)

- Resonance state with zero values of the total orbital momentum (L=0)
- Large values of W_{sh} in the internal region $0 \le N_{sh} \le 45$

Candidates for the Hoyle state in ¹¹B

J^{π}	<i>E</i> , MeV	Γ, keV	J^{π}	<i>E</i> , MeV	Γ, keV
$\frac{3}{2}^{-}$	0.755	0.755 0.58 $\frac{1}{2}^+$		0.437	15.26
	1.402	185.18		0.702	12.30
	1.756	143.72		1.597	15.95
$\frac{1}{2}^{-}$	1.436	374.64	$\frac{3}{2}^{+}$	1.147	1.50
_	1.895	100.95		1.367	8.58
	2.404	450.07		1.715	41.24
5-2	0.583	5.14.10 ⁻⁴	<u>5</u> +	1.047	<mark>1.54</mark>
_	1.990	32.63		1.951	40.20
	2.251	138.87		2.265	54.73
	2.905	120.46		2.748	167.61

V. S. Vasilevsky. "Microscopic three-cluster description of ¹¹B and ¹¹C nuclei", Ukr. J Phys., 58, pp. 544-553, 2013.

Candidates for the Hoyle state in ¹¹*C*

J^{π}	<i>E</i> , MeV	Γ, keV	J^{π}	<i>E</i> , MeV	Γ, keV
<u>3</u> - 2	0.805	9.93·10 ⁻³	$\frac{1}{2}^{+}$	0.906	162.94
_	1.920	105.08		1.930	59.88
	2.324	619.76		2.679	86.69
$\frac{1}{2}^{-}$	1.142	0.71	$\frac{3}{2}^{+}$	2.268	34.25
_	2.266	790.98		2.478	159.28
	3.014	366.15		2.850	115.19
<u>5</u> - 2	0.783	9.65·10 ⁻⁵	$\frac{5}{2}^{+}$	1.460	0.90
	1.897	5.77		2.346	82.72
	3.026	182.69		3.179	122.75

V. S. Vasilevsky. "Microscopic three-cluster description of ¹¹B and ¹¹C nuclei", Ukr. J Phys., 58, pp. 544-553, 2013.

Wave function of $1/2^+$ state

¹¹B, E=0.44 MeV, Γ=15 keV

¹¹C, E=0.91 MeV, Γ=163 keV

Wave function of $3/2^-$ state

¹¹*B*, *E*=0.76 MeV, Γ=580 eV

¹¹C, E=0.81 MeV, Γ=9 eV

Wave function of 5/2⁻ states

¹¹*B*, *E*=0.58 MeV, Γ=0.5 eV

¹¹C, E=0.78 MeV, Γ=0.1 eV

Wave function of $5/2^+$ states

¹¹B, E=1.05 MeV, Γ=1.5 keV

¹¹C, E=1.46 MeV, Γ=0.9 keV

OCM+CSM versus AMHHB: ¹¹B

	OCM+CSM [1,2]			A	AMHHB		
J^{π}	<i>E</i> , MeV	Г, keV	HAS	<i>E</i> , MeV	Γ, keV	HAS	
1/2+	0.75	190	Y	0.44	15	Ν	
$3/2_{3}^{-}$	-2.90	-	-	-0.59	-	-	
3/24				0.76	0.58	Y	

Yamada, T. and Funaki, Y. " $\alpha + \alpha + t$ cluster structures and ¹² $C(0_2^+)$ -analog states in ¹¹ B", *Phys. Rev. C*, **82**, 064315, 2010.

Yamada, T. and Funaki, Y. "Three-Body Cluster Structures and Hoyle-Analogue States in ¹¹B", Progr. Theor. Phys. Suppl., 196, 388, 2012.

Candidates for the Hoyle state in ¹⁰B

J^{π}	<i>E</i> , MeV	Γ, keV	Г/Е	<i>R</i> ₁ , fm	<i>R</i> ₂ , fm
1+	0.604	232.30	0.384		
	0.987	7.08	7.17×10 ⁻³	6.67	10.67
	1.536	196.36	0.128		
2+	1.055	12.06	11.43×10 ⁻³	6.64	10.83
	2.810	170.74	0.061		
3+	1.062	11.73	11.05×10 ⁻³	6.43	10.35
	2.202	526.47	0.239		
1-	1.100	76.75	0.070	9.31	10.84
	1.820	562.71	0.309		

A. V. Nesterov, V. S. Vasilevsky, T. P. Kovalenko. "Spectrum of bound states of nucleus ¹⁰B in a three-cluster microscopic model." Ukr. J. Phys., **59**, 1065, 2014.

Wave function of 3^+ and 1^+ resonance states in ${}^{10}B$.

 $^{10}B, J^{\pi} = 3^+$

 $^{10}B, J^{\pi} = 1^+$

Hoyle states in ${}^{9}Be$ and ${}^{9}B$

Candidates for the Hoyle state in ⁹Be and ⁹B

⁹ Be			⁹ B			
J^{π}	<i>E</i> , MeV	Γ, MeV	J^{π}	<i>E</i> , MeV	Γ, MeV	
3/2-	-1.574	-	3/2-	0.379	1.076×10 ⁻⁶	
1/2+	0.338	0.168	1/2+	0.636	0.477	
5/2-	0.897	2.36×10^{-5}	5/2-	2.805	0.018	
5/2+	2.086	0.112	3/2+	2.338	2.796	
3/22	2.704	2.534	1/2-	3.398	3.428	
1/2-	2.866	1.597	5/2+	3.670	0.415	
3/2+	4.062	1.224	3/22	3.420	3.361	
7/2-	4.766	4.041	5/2 ⁻ 2	5.697	5.146	

V. S. Vasilevsky, K. Katō, N. Takibayev. "Formation and decay of resonance states in ⁹Be and ⁹B nuclei. Microscopic three-cluster model investigations", Phys. Rev. C, **96**, 034322, 2017.

Wave function of the 1/2⁺ resonance states in ⁹Be and ⁹B

Wave function of the $5/2^-$ resonance state in 9Be and 9B .

Shape of triangles. Resonance states in ¹¹*B* and ¹¹*C*.

Shape of triangles. Resonance states in ⁹Be and ¹²C.

V.S. Vasilevsky (BITP)

May 13 - 18, 2016 44 / 49

Shape of triangles. Resonance states in ⁹Be and ¹⁰B.

V.S. Vasilevsky (BITP)

May 13 - 18, 2016 45 / 49

Energy and width of the Hoyle-analog states

Nucleus	Partition	J^{π}	E, MeV	Г, keV	Γ/Ε
⁹ Be	$\alpha + \alpha + \mathbf{n}$	5/2-	0.897	2.36·10 ⁻²	2.63·10 ⁻⁵
⁹ B	$\alpha + \alpha + \mathbf{n}$	3/2-	0.379	1.08·10 ⁻³	2.84·10 ⁻⁶
		5/2-	2.805	18.0·10 ^{−3}	6.42·10 ⁻⁶
¹¹ B	$\alpha + \alpha + {}^{3}H$	5/2-	0.583	$5.14 \cdot 10^{-4}$	8.87·10 ⁻⁷
		3/2-	0.755	0.58	7.70×10 ⁻⁴
		5/2+	1.047	1.54	1.47×10 ⁻³
¹¹ C	$\alpha + \alpha + {}^{3}He$	3/2-	0.805	9.93·10 ⁻³	1.23·10 ⁻⁵
		5/2-	0.783	9.64·10 ⁻⁵	1.23·10 ⁻⁷
		5/2+	1.460	0.90	6.16×10 ⁻⁴
¹² C	$\alpha + \alpha + \alpha$	0+	0.395	1.14·10 ⁻³	2.88 · 10 ^{−6}

New criterion for the Hoyle-analog states: $[\Gamma/E < 2 \cdot 10^{-3}]$

Energy and width of the Hoyle-analog states

Summary

Hoyle-analog states in light nuclei:

- 5/2⁻ state in ⁹Be
- 3/2⁻ 5/2⁻ states in ⁹B
- 3/2⁻, 5/2⁻ and 5/2⁺ states in ¹¹B
- 3/2⁻, 5/2⁻ and 5/2⁺ states in ¹¹C
- We did not find the Hoyle-analog state in ¹⁰B
- Hoyle-analog state is a very narrow resonance state with a fairly compact three-cluster configuration
- Synthesis of light nuclei ⁹*Be*, ¹¹*B* and ¹¹*C* is possible in a triple collision of $\alpha + \alpha + n$, $\alpha + \alpha + ^3 H$ and $\alpha + \alpha + ^3 He$, respectively

THANK YOU VERY MUCH!