The cluster structure of ¹²C within the THSR wave function

Bo Zhou

Hokkaido University

The 4th international workshop on "State of the Art in Nuclear Cluster Physics"

2018-05-15@Galveston

Outline

1. Container picture

2. The ground and excited 0⁺ states of ¹²C in the container picture

3. The 3⁻ state of ¹²C in the container picture (*Preliminary*)

4. Summary and Prospect

Two fundamental pictures in light nuclei.

P. Navrátil, et al, Phys. Rev. Lett. 84, 5728 (2000)

Alpha Cluster Condensation in ¹²C and ¹⁶O

A. Tohsaki,¹ H. Horiuchi,² P. Schuck,³ and G. Röpke⁴

Department of Fine Materials Engineering, Shinshu University, Ueda 386-8567, Japan ²Department of Physics, Kyoto University, Kyoto 606-8502, Japan ³Institut de Physique Nucléaire, F-91406 Orsay Cedex, France ⁴FB Physik, Universität Rostock, D-18051 Rostock, Germany (Received 29 June 2001; published 17 October 2001)

A new α -cluster wave function is proposed which is of the α -particle condensate type. Applications to ¹²C and ¹⁶O show that states of low density close to the 3 and 4 α -particle thresholds in both nuclei are possibly of this kind. It is conjectured that all self-conjugate 4*n* nuclei may show similar features.

3 can be considered as the size parameter of the nucleus

A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Rev. Mod. Phys. 89, 011002 (2017).

H.Horiuchi and K.Ikeda, PTP40, 277(1968)

Container picture for the clusters motion

The clusters make the **localized** motion confined by the inter-cluster distance parameter *R*.

$$\mathcal{A}\{\exp\left[-\frac{8\left(\boldsymbol{r}-\boldsymbol{R}\right)^{2}}{5\boldsymbol{b}^{2}}\right]\phi(\alpha)\phi(^{16}0)\}$$

Rich cluster structures of 0⁺ states in ¹²C

- **OCM**_K : C. Kurokawa and K. Kato, PRC 71, 021301(2005); NPA 792, 87 (2007).
- **OCM**_o : S. Ohtsubo, Y. Fukushima, M. Kamimura, and E. Hiyama, PTEP, 2013, 073D02.

Extended $2\alpha + \alpha$ THSR Wave Function

B.Z, et al., PTEP.2014, 101D01.

$$\begin{split} \Phi^{B}(\boldsymbol{R}_{1},\boldsymbol{R}_{2}) &\propto \phi_{G}\mathcal{A}\{\exp\left(-\frac{(\boldsymbol{r}_{1}-\boldsymbol{R}_{1})^{2}}{b^{2}} - \frac{(\boldsymbol{r}_{2}-\boldsymbol{R}_{2})^{2}}{\frac{3}{4}b^{2}}\right)\phi(\alpha_{1})\phi(\alpha_{2})\phi(\alpha_{3})\}\\ \Phi(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2}) &= \int d^{3}\boldsymbol{R}_{1}d^{3}\boldsymbol{R}_{2}\exp\left[-\sum_{i=1}^{2}\left(\frac{\boldsymbol{R}_{ix}^{2}}{\beta_{ix}^{2}} + \frac{\boldsymbol{R}_{iy}^{2}}{\beta_{iy}^{2}} + \frac{\boldsymbol{R}_{iz}^{2}}{\beta_{iz}^{2}}\right)\right]\Phi^{B}(\boldsymbol{R}_{1},\boldsymbol{R}_{2})\\ &\propto \phi_{G}\mathcal{A}\{\exp\left[-\sum_{i=1}^{2}\left(\frac{\boldsymbol{r}_{ix}^{2}}{B_{ix}^{2}} + \frac{\boldsymbol{r}_{iy}^{2}}{B_{iy}^{2}} + \frac{\boldsymbol{r}_{iz}^{2}}{B_{iz}^{2}}\right)\right]\phi(\alpha_{1})\phi(\alpha_{2})\phi(\alpha_{3})\}\\ & B_{1k}^{2} = b^{2} + \beta_{1k}^{2}, \ B_{2k}^{2} = \frac{3}{4}b^{2} + \beta_{2k}^{2}\\ \end{split}$$
nucleon-nucleon interaction:
$$V_{N} = \sum_{i=1}^{20}\{(1-M) - MP_{\sigma}P_{\tau}\}_{ii}\sum_{i=1}^{2}v_{n}e^{-\frac{\boldsymbol{r}_{ij}^{2}}{a_{n}^{2}}}. \end{split}$$

i > j

Effective

Radius-Constraint Method for removing the continuum states.

Y. Funaki, et al., Prog.Theor.Phys.115,115(2006).

n=1

The ground state of ¹²C in the two-**B** THSR wave function

[1] Y.Fukushima and M.Kamimura in Proceedings of the International Conference on Nuclear Structure (1977). M.Kamimura, Nucl.Phys.A 351,456(1981)(RGM)

[2] E.Uegaki, S.Okabe, Y.Abe and H.Tanaka, PTP 57,1262(1977); 59,1031(1978);
62,1621(1979) (GCM)

[3] Y. Funaki et al., PRC 67, 051306(2003) (THSR)

Pot	Emin (β ₀)[3]	Emin (β_1, β_2)	Full solution (GCM/RGM)	<mark>GCM</mark> (β ₀)[3]	GCM (β ₁ ,β ₂)	Squared overlap
F1	-86.09	-87.28	-87.92 [2]	-87.81	-87.98	0.975
F2	-87.68	-89.05	-89.4 [1]	-89.52	-89.65	0.978

Squared overlap: $|\langle \Phi_{min}(\beta_1,\beta_2)|\Phi_{GCM}(\beta_1,\beta_2)\rangle|^2$

The single THSR wave function is almost equivalent to the RGM/GCM wave function.

In the container picture, 2α correlation is very important for the ground state of ¹²C.

B.Z, A.Tohsaki, et al. Prog. Theor. Exp. Phys. 2014, 101D01

The 0_3^+ and 0_4^+ states of ¹²C

9

 \mathcal{D}_{4}^{+}

 0^{+}_{3}

3.64

(-89.65)

3.60

Relative wave functions between $2\alpha - \alpha$ and $\alpha - \alpha$ in ¹²C

$$O_B = \sum_{i=1}^{12} (\mathbf{r}_i - \mathbf{r}_{cm})^2 \qquad \qquad O_B = \sum_{k=1}^3 \sum_{i \in \alpha_k} (\mathbf{r}_i - \mathbf{X}_k)^2 + 2\xi_1^2 + \frac{8}{3}\xi_2^2,$$

The reduced width amplitude (RWA) of ¹²C can be written as,

$$\mathcal{Y}(a) = \sqrt{\frac{12!}{4!8!}} \langle [\hat{\Phi}_{2\alpha}^{0^+}, Y_{00}(\hat{\boldsymbol{\xi}}_2)]_{00} \frac{\delta(\xi_2 - a)}{\xi_2^2} \phi(\alpha) | \hat{\Phi}_{\text{gcm}}^{0^+} \rangle.$$

We define a new 2α relative wave function of ¹²C as follows,

 $\chi(a) = N_0 \sqrt{\frac{12!}{4!4!4!}} \langle \left[e^{-\frac{\xi_{2x}^2}{B_{2x}^2} - \frac{\xi_{2y}^2}{B_{2y}^2} - \frac{\xi_{2z}^2}{B_{2z}^2}} \phi^3(\alpha) \right]^{0^+} \frac{\delta(\xi_1 - a)}{\xi_1^2} Y_{00}(\hat{\xi_1}) |\hat{\Phi}_{\rm gcm}^{0^+}\rangle$

B. Zhou, A. Tohsaki, H. Horiuchi, and Z. Ren, Phys. Rev. C **94**, 044319 (2016).

ξ1

ξ2

FIG. 5: The calculated 2 α correlation wave functions of the $0^+_1, 0^+_2, 0^+_3$, and 0^+_4 states using four sets of β_2 parameters in ¹²C.

Summary and Prospect

1. The $2\alpha + \alpha$ wave function was constructed and it is found that the 2α correlation in the ground state of 12C is important.

2. The existence of the 0_3^+ and 0_4^+ states around 10 MeV excitation energy in ¹²C is confirmed by using the THSR-GCM+Radius-Constraint Method and the constructed single THSR wave function. This 0_3^+ state is considered to be a breathing-like excited state of the Hoyle state.

Future:

The negative-parity state of ¹²C will be studied in the Hybrid-THSR-Brink wave function

$$\propto \mathcal{A}\{\exp[-\frac{(\boldsymbol{\xi}_1 - \boldsymbol{R}_1)^2}{b^2 + 2\beta^2} - \frac{(\boldsymbol{\xi}_2 - \boldsymbol{R}_2)^2}{3/4(b^2 + 2\beta^2)}\phi(\alpha_1)\phi(\alpha_2)\phi(\alpha_3)]\}.$$

to discuss the intrinsic shape of the ¹²C

Thanks for my collaborators and your attention!

Hisashi Horiuchi Akihiro Tohsaki Zhongzhou Ren Chang Xu Mengjiao Lyu Qing Zhao Gerd Röpke Peter Schuck Yasuro Funaki Taiichi Yamada

(RCNP) (RCNP) (Tongji Univ.) (Nanjing Univ.) (Nanjing Univ.) (Nanjing Univ.) (Rostock Univ.) (Paris-Sud Univ.) (Kanto Gakuin Univ.) (Kanto Gakuin Univ.)