

Nuclear clustering within the beyond RMF framework

P. Marević^{1,2}, J.-P. Ebran¹, E. Khan², T. Nikšić³, D. Vretenar³

¹CEA, DAM, DIF, France
 ²IPN Orsay, France
 ³University of Zagreb, Croatia

State of the Art in Nuclear Cluster Physics 4

Galveston, Texas, USA 17/05/2018

A sneak peek: ²⁰Ne spectroscopy

Outline of the talk

State of the Art in Nuclear Cluster Physics 4

Galveston, Texas, USA 17/05/2018

Theoretical framework

Results

Theoretical framework

State of the Art in Nuclear Cluster Physics 4

Galveston, Texas, USA 17/05/2018

Outline	Theoretica
Outline	Theoretic

NEDFs as global theoretical framework

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model

Theoretical framework Single-reference (mean-field) level

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model
 - DD-PC1 functional [T. Nikšić et al. PRC 78, 034318 (2008).]

$$\mathcal{L} = \bar{\psi}(i\gamma \cdot \partial - m)\psi - \frac{1}{2}\alpha_{S}(\hat{\rho})(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{V}(\hat{\rho})(\bar{\psi}\gamma^{\mu}\psi)(\bar{\psi}\gamma_{\mu}\psi) - \frac{1}{2}\alpha_{TV}(\hat{\rho})(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2}\delta_{S}(\partial_{\nu}\bar{\psi}\psi)(\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma \cdot A\frac{(1-\tau_{3})}{2}\psi$$

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model
 - DD-PC1 functional [T. Nikšić et al. PRC 78, 034318 (2008).]

$$\mathcal{L} = \bar{\psi}(i\gamma \cdot \partial - m)\psi - \frac{1}{2}\alpha_{5}(\hat{\rho})(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{V}(\hat{\rho})(\bar{\psi}\gamma^{\mu}\psi)(\bar{\psi}\gamma_{\mu}\psi) - \frac{1}{2}\alpha_{TV}(\hat{\rho})(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2}\delta_{5}(\partial_{\nu}\bar{\psi}\psi)(\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma \cdot A\frac{(1-\tau_{3})}{2}\psi$$

TMR separable pairing [Y. Tian *et al.* PLB 676, 44 (2009).] $\langle k | V^{1S}_{0} | k' \rangle = -Gp(k)p(k'), \qquad p(k) = e^{-a^{2}k^{2}}$

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model
 - DD-PC1 functional [T. Nikšić et al. PRC 78, 034318 (2008).]

$$\mathcal{L} = \bar{\psi}(i\gamma \cdot \partial - m)\psi - \frac{1}{2}\alpha_{5}(\hat{\rho})(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{V}(\hat{\rho})(\bar{\psi}\gamma^{\mu}\psi)(\bar{\psi}\gamma_{\mu}\psi) - \frac{1}{2}\alpha_{TV}(\hat{\rho})(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2}\delta_{5}(\partial_{\nu}\bar{\psi}\psi)(\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma \cdot A\frac{(1-\tau_{3})}{2}\psi$$

- TMR separable pairing [Y. Tian *et al.* PLB 676, 44 (2009).] $\langle k | V^{1S}_0 | k' \rangle = -Gp(k)p(k'), \qquad p(k) = e^{-a^2k^2}$
- RHB equations solved by expanding nuclear spinors in HO basis

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model
 - DD-PC1 functional [T. Nikšić et al. PRC 78, 034318 (2008).]

$$\mathcal{L} = \bar{\psi}(i\gamma \cdot \partial - m)\psi - \frac{1}{2}\alpha_{5}(\hat{\rho})(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{V}(\hat{\rho})(\bar{\psi}\gamma^{\mu}\psi)(\bar{\psi}\gamma_{\mu}\psi) - \frac{1}{2}\alpha_{TV}(\hat{\rho})(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2}\delta_{5}(\partial_{\nu}\bar{\psi}\psi)(\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma \cdot A\frac{(1-\tau_{3})}{2}\psi$$

- TMR separable pairing [Y. Tian *et al.* PLB 676, 44 (2009).] $\langle k | V^{1S}_0 | k' \rangle = -Gp(k)p(k'), \qquad p(k) = e^{-a^2k^2}$
- RHB equations solved by expanding nuclear spinors in HO basis
- dimensionless deformation parameters β_{λ}

$$\beta_{\lambda} = \frac{4\pi}{3AR^{\lambda}} q_{\lambda 0}$$

- NEDFs as global theoretical framework
- relativistic Hartree-Bogoliubov model
 - DD-PC1 functional [T. Nikšić et al. PRC 78, 034318 (2008).]

$$\mathcal{L} = \bar{\psi}(i\gamma \cdot \partial - m)\psi - \frac{1}{2}\alpha_{5}(\hat{\rho})(\bar{\psi}\psi)(\bar{\psi}\psi) - \frac{1}{2}\alpha_{V}(\hat{\rho})(\bar{\psi}\gamma^{\mu}\psi)(\bar{\psi}\gamma_{\mu}\psi) - \frac{1}{2}\alpha_{TV}(\hat{\rho})(\bar{\psi}\vec{\tau}\gamma^{\mu}\psi)(\bar{\psi}\vec{\tau}\gamma_{\mu}\psi) - \frac{1}{2}\delta_{5}(\partial_{\nu}\bar{\psi}\psi)(\partial^{\nu}\bar{\psi}\psi) - e\bar{\psi}\gamma \cdot A\frac{(1-\tau_{3})}{2}\psi$$

- TMR separable pairing [Y. Tian *et al.* PLB 676, 44 (2009).] $\langle k | V^{1S}_0 | k' \rangle = -Gp(k)p(k'), \qquad p(k) = e^{-a^2k^2}$
- RHB equations solved by expanding nuclear spinors in HO basis
- dimensionless deformation parameters β_{λ}

$$\beta_{\lambda} = \frac{4\pi}{3AR^{\lambda}} q_{\lambda 0}$$

self-consistent calculation of ground-state properties

Theoretical framework How atomic nuclei cluster

Theoretical framework How atomic nuclei cluster

J.-P. Ebran et al., Nature 487, 341 (2012).

Theoretical framework How atomic nuclei cluster

J.-P. Ebran et al., Nature 487, 341 (2012).

REDFs yield smaller α values [J.-P. E. et al. PRC 87, 044307 (2013).]

Theoretical framework How atomic nuclei cluster

J.-P. Ebran et al., Nature 487, 341 (2012).

- **REDFs** yield smaller α values [J.-P. E. *et al.* PRC 87, 044307 (2013).]
- depth of the confining potential [J.-P. E. et al. PRC 90, 054329 (2014).]

Theoretical framework How atomic nuclei cluster

J.-P. Ebran et al., Nature 487, 341 (2012).

- **REDFs** yield smaller α values [J.-P. E. *et al.* PRC 87, 044307 (2013).]
- depth of the confining potential [J.-P. E. et al. PRC 90, 054329 (2014).]
- quantitative description: going beyond mean-field

• constrained RHB solutions as BMF input: $|\phi(q_j)\rangle$, $q \equiv (\beta_2, \beta_3)$

- constrained RHB solutions as BMF input: $|\phi(q_j)\rangle$, $q \equiv (\beta_2, \beta_3)$
- configuration mixing of symmetry-restored states:

- constrained RHB solutions as BMF input: $|\phi(q_j)\rangle$, $q \equiv (\beta_2, \beta_3)$
- configuration mixing of symmetry-restored states:

variational principle yields the Hill-Wheeler-Griffin equation:

$$\sum_{j} \underbrace{\mathcal{H}^{J\pi}(q_{i}, q_{j})}_{\text{Hamiltonian kernel}} \underbrace{\overbrace{g_{\alpha}^{J\pi}(q_{j})}^{\text{coll. w. f.}}}_{\text{exc. spectra}} = \underbrace{\mathcal{E}_{\alpha}^{J\pi}}_{\text{exc. spectra}} g_{\alpha}^{J\pi}(q_{i})$$

- constrained RHB solutions as BMF input: $|\phi(q_j)\rangle$, $q \equiv (\beta_2, \beta_3)$
- configuration mixing of symmetry-restored states:

variational principle yields the Hill-Wheeler-Griffin equation:

$$\sum_{j} \underbrace{\mathcal{H}^{J\pi}(q_{i}, q_{j})}_{\text{Hamiltonian kernel}} \underbrace{\overbrace{g_{\alpha}^{J\pi}(q_{j})}^{\text{coll. w. f.}}}_{\text{exc. spectra}} = \underbrace{\mathcal{E}_{\alpha}^{J\pi}}_{\text{exc. spectra}} g_{\alpha}^{J\pi}(q_{i})$$

solving the HWG equation gives collective spectra and wave functions

- constrained RHB solutions as BMF input: $|\phi(q_j)\rangle$, $q \equiv (\beta_2, \beta_3)$
- configuration mixing of symmetry-restored states:

variational principle yields the Hill-Wheeler-Griffin equation:

$$\sum_{j} \underbrace{\mathcal{H}^{J\pi}(q_i, q_j)}_{\text{Hamiltonian kernel}} \underbrace{\overbrace{g_{\alpha}^{J\pi}(q_j)}^{\text{coll. w. f.}}}_{\text{exc. spectra}} = \underbrace{\mathcal{E}_{\alpha}^{J\pi}}_{\text{exc. spectra}} g_{\alpha}^{J\pi}(q_i)$$

- solving the HWG equation gives collective spectra and wave functions
- calculation of various observables ($Q_{\lambda}^{\text{spec}}$, $B(E\lambda)$, $F_L(q)$, ...)

Beyond RMF description of light nuclei

State of the Art in Nuclear Cluster Physics 4

Galveston, Texas, USA 17/05/2018

Beyond RMF description of light nuclei Neon isotopes: mean-field energies

Beyond RMF description of light nuclei Neon isotopes: mean-field energies

Beyond RMF description of light nuclei Neon isotopes: mean-field energies

Galveston, Texas, USA 17/05/2018

Beyond RMF description of light nuclei Neon isotopes: mean-field energies

Galveston, Texas, USA 17/05/2018

State of the Art in Nuclear Cluster Physics 4

Galveston, Texas, USA 17/05/2018

Beyond RMF description of light nuclei Neon isotopes: symmetry-restored energies

State of the Art in Nuclear Cluster Physics 4

Galveston, Texas, USA 17/05/2018

Beyond RMF description of light nuclei Neon isotopes: symmetry-restored energies

PHYSICAL REVIEW C 97, 024334 (2018)

Quadrupole and octupole collectivity and cluster structures in neon isotopes

P. Marević,^{1,2} J.-P. Ebran,¹ E. Khan,² T. Nikšić,³ and D. Vretenar³

¹CEA, DAM, DIF, F-91297 Arpajon, France

²Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, Université Paris-Saclay, F-91406 Orsay Cedex, France ³Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia

Beyond RMF description of light nuclei Neon isotopes: self-conjugate ²⁰Ne nucleus

Collective wave functions:

Beyond RMF description of light nuclei Neon isotopes: self-conjugate ²⁰Ne nucleus

Beyond RMF description of light nuclei Neon isotopes: self-conjugate ²⁰Ne nucleus

Beyond RMF description of light nuclei Neon isotopes: self-conjugate ²⁰Ne nucleus

Beyond RMF description of light nuclei Neon isotopes: self-conjugate ²⁰Ne nucleus

State of the Art in Nuclear Cluster Physics 4

Galveston, Texas, USA 17/05/2018

Beyond RMF description of light nuclei Structure of ¹²C isotope (preliminary)

Conclusion

State of the Art in Nuclear Cluster Physics 4

Galveston, Texas, USA 17/05/2018

- REDF as powerful tool for nuclear structure calculations
 - mean-field description of ground-state properties
 - clustering due to the depth of confining potential
 - quantitative analysis on a beyond mean-field level

- REDF as powerful tool for nuclear structure calculations
 - mean-field description of ground-state properties
 - clustering due to the depth of confining potential
 - quantitative analysis on a beyond mean-field level
- clustering in light nuclei
 - systematics of Ne isotopic chain [P. M. et al., PRC 97, 024334 (2018).]
 - collective properties and cluster structures in ²⁰Ne
 - promising preliminary results for ¹²C

- REDF as powerful tool for nuclear structure calculations
 - mean-field description of ground-state properties
 - clustering due to the depth of confining potential
 - quantitative analysis on a beyond mean-field level
- clustering in light nuclei
 - systematics of Ne isotopic chain [P. M. et al., PRC 97, 024334 (2018).]
 - collective properties and cluster structures in ²⁰Ne
 - promising preliminary results for ¹²C
- towards unified description of quantum-liquid and cluster states
 - calculation of (in)elastic form factors and charge radii
 - structure of heavy nuclei
 - inclusion of the triaxial degree of freedom

Thank you for your attention!

State of the Art in Nuclear Cluster Physics 4

Galveston, Texas, USA 17/05/2018

- constrained RHB solutions as BMF input: $|\phi(q_j)\rangle$, $q \equiv (\beta_2, \beta_3)$
- angular momentum projection

$$\hat{P}^{J}_{MK}=rac{2J+1}{8\pi^{2}}\int\,d\Omega D^{J^{*}}_{MK}(\Omega)\hat{R}(\Omega)$$

$$\Omega = (\alpha, \beta, \gamma), \qquad D^J_{MK}(\Omega) = e^{-iM\alpha} d^J_{MK}(\beta) e^{-iK\gamma}, \qquad \hat{R} = e^{-i\alpha \hat{J}_z} e^{-i\beta \hat{J}_y} e^{-i\gamma \hat{J}_z}$$

- particle number projection with Fomenko expansion
- linear combination of symmetry-projected RHB states

$$\underbrace{|JNZM\pi;\alpha\rangle}_{\text{collective state}} = \sum_{j} \sum_{K} \underbrace{f_{\alpha}^{JK\pi}(q_{j})}_{\text{weight function}} \underbrace{\hat{P}_{MK}^{J}\hat{P}^{\pi}\hat{P}^{N}\hat{P}^{Z}}_{\text{projectors}} \underbrace{|\phi(q_{j})\rangle}_{\text{RHB state}}$$

- preserved symmetries
 - time-reversal symmetry (even-even nuclei)
 - axial symmetry $(\hat{J}_z | \phi(q_j)) = 0, |JNZM\pi; \alpha\rangle \rightarrow |JNZ\pi; \alpha\rangle)$
 - simplex-x symmetry $(\hat{P}e^{-i\pi\hat{J}_x})$
- variational equation determines weight functions $f_{\alpha}^{J\pi}$

$$\delta E^{J\pi} = \delta \frac{\langle JNZ\pi; \alpha | \hat{H} | JNZ\pi; \alpha \rangle}{\langle JNZ\pi; \alpha | JNZ\pi; \alpha \rangle} = 0$$

 generator coordinate method (GCM) framework [Hill, Wheeler, PR 89, 1102 (1953).; L. Lathouwers, AoP 102, 347 (1976).; Ring, Schuck, Nuclear Many-Body Problem]

ACKNOWLEDGMENT

The essential part of the work which led to this article was done on Christmas Day 1974. I therefore want to thank Santa Claus for inspiration. I am grateful to Prof. Per-Olov Löwdin for being able to benefit from the scientific atmosphere at the Uppsala Quantum Chemistry Group and to Profs. M. Bouten and P. Van Leuven for valuable comments.

Theoretical framework - Backup

discretized Hill-Wheeler-Griffin (HWG) equation

$$\sum_{j} \left[\underbrace{\mathcal{H}^{J\pi}(q_{i}, q_{j})}_{\text{Hamiltonian kernel}} - E_{\alpha}^{J\pi} \underbrace{\mathcal{N}^{J\pi}(q_{i}, q_{j})}_{\text{norm kernel}} \right] f_{\alpha}^{J\pi}(q_{j}) = 0$$

$$\mathcal{O}^{J\pi}(q_i,q_j) = \frac{2J+1}{2} \delta_{M0} \delta_{K0} \int_0^{\pi} d\beta \sin(\beta) d_{00}^{J*}(\beta) \left\langle \Phi(q_i) \right| \hat{O} e^{-i\beta \hat{J}_x} \hat{P}^{\pi} \left| \Phi(q_j) \right\rangle$$

one rewrites the HWG equation as an ordinary eigenvalue problem

$$\sum_{j} ilde{\mathcal{H}}^{J\pi}(q_i,q_j) g^{J\pi}_lpha(q_j) = E^{J\pi}_lpha g^{J\pi}_lpha(q_i)$$

where modified Hamiltonian kernel reads

$$ilde{\mathcal{H}}^{J\pi}(q_i,q_j) = \sum_{k,l} \left[(\mathcal{N}^{J\pi})^{-1/2}(q_i,q_k) \mathcal{H}^{J\pi}(q_k,q_l) (\mathcal{N}^{J\pi})^{-1/2}(q_l,q_j)
ight]$$

and collective wave functions read

$$g^{J\pi}_{lpha}(q_i) = \sum_i \left(\mathcal{N}^{J\pi}
ight)^{1/2}(q_i,q_j) f^{J\pi}_{lpha}(q_j)$$

State of the Art in Nuclear Cluster Physics 4

Galveston, Texas, USA 17/05/2018

Theoretical framework - Backup

HWG equation is solved by diagonalizing the norm kernel

$$\sum_{j} \mathcal{N}^{J\pi}(q_i, q_j) u_k^{J\pi}(q_j) = n_k^{J\pi} u_k^{J\pi}(q_j)$$

and eliminating from the basis states with $n_k^{J\pi} < \zeta$

the collective Hamiltonian is built from the remaining states

$$\mathcal{H}_{kl}^{J\pi c} = rac{1}{\sqrt{n_k}} rac{1}{\sqrt{n_l}} \sum_{i,j} u_k^{J\pi}(q_i) ilde{\mathcal{H}}^{J\pi}(q_i,q_j) u_l^{J\pi}(q_j)$$

• and it is subsequently diagonalized for each (J,π)

$$\sum_{l} \mathcal{H}_{kl}^{J\pi c} g_{l}^{J\pi \alpha} = E_{\alpha}^{J\pi} g_{k}^{J\pi \alpha}$$

calculation of physical observables via collective w.f. and weight functions

$$g^{J\pi}_{\alpha}(q_i) = \sum_k g^{J\pi\alpha}_k u^{J\pi}_k(q_i), \quad f^{J\pi}_{\alpha}(q_i) = \sum_k rac{g^{J\pilpha}_k}{\sqrt{n_k^{J\pi}}} u^{J\pi}_k(q_i)$$

State of the Art in Nuclear Cluster Physics 4

Galveston, Texas, USA 17/05/2018