SOTANCP4 2018

STUDY OF α-PARTICLE INDUCED REACTIONS USING THE MUSIC DETECTOR

MELINA AVILA Argonne National Laboratory

May 15 2018 Galveston TX

OUTLINE

- Motivation: Why α-induced reactions are important?
- Experimental techniques to study important nuclear reactions
- Recent results and perspectives
- Summary

Helium is the second most abundant element in the universe!

Lodders, et al., 2009. Landolt Börnstein, New Series, Vol. VI/4B, Chap. 4.4, J.E. Trümper (ed.), Berlin, Heidelberg, New York: Springer Verlag, p. 560 630.

Rates of some (α,p) and (α,n) reactions are important input parameters for various astrophysical processes.

(α,p)

- X-ray burst.
- Classical novae
- Supernovae: Radioactive ⁴⁴Ti production

(α,n)

- s-process: Important neutron sources.
- r-process in neutrino-driven winds

X-RAY BURSTS

Type I X-ray bursts

- Explosive hydrogen-helium burning arising from thermonuclear ignition in the envelope of a neutron star in close binary systems.
- Most common thermonuclear explosions in the Galaxy.

Discovery

- They were first observed by the Astronomical Netherlands Satellite (ANS) in 1975.
- Within a year of the discovery more than 20 bursting sources were discovered
- 110 Sources known so far (The Multi-INstrument Burst ARchive (MINBAR) data base https://burst.sci.monash.edu/sources)

TYPE I X-RAY BURSTS OBSERVABLES

Light curves properties

- Peak luminosity ~10³⁸ erg s⁻¹
- Burst duration 10-100 s
- Fast rise time ~ 0.5-10 s
- Decay time ~ 10-100 s
- No cataclysmic event recurrence rate: hours to days

Accumulation of accreted matter for hours - Unstable nuclear burning for seconds Four of seven burst observed with EXOSAT in Aug 19 1985 during 20 hr observation

TYPE I X-RAY BURSTS OBSERVABLES

Light curves properties

Provide unique information regarding the fundamental properties of the neutron star. Can be used to constrain the mass, radius and spin frequency of a neutron star.

The X-ray light curves depend on many parameters:

- Nature of the companion star (H/He ratio)
- Accretion rate
- Surface properties (heat transport)
- Neutrinos (cooling)
- Turbulence in the explosions
- Rotation, …
- Nuclear physics

no complete understanding yet!

NUCLEAR PHYSICS IN TYPE I X-RAY BURSTS

NUCLEOSYNTHESIS IN TYPE I X-RAY BURSTS

Burst ignition The burst is powered by the 3α reaction, followed by the α p-process and the rp-process αp process (α,p) and (p,γ) reactions rp (rapid proton capture) process (p, γ) reactions and β decays Hundreds of nuclear species! What are the most important reactions?

SENSITIVITY STUDIES

Identify key nuclear reactions

Sensitivity study using self-consistent X-ray burst models that account for the coupling between nuclear energy generation and the astrophysical conditions.

R.H. Cyburt et al., ApJ 830, 55 (2016)

Relevant (α,p) reactions in the single-zone model

Many (α, p) reactions!

Relevant reactions in the multi-zone model

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	$^{15}\mathrm{O}(\alpha, \gamma)^{19}\mathrm{Ne}$	D	16	1
2	⁵⁶ Ni(α , p) ⁵⁹ Cu	U	6.4	1
3	59 Cu(p, $\gamma)^{60}$ Zn	D	5.1	1
4	61 Ga(p. $\gamma){}^{62}$ Ge	D	3.7	1
5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3	1
6	$^{14}O(\alpha, p)^{17}F$	D	5.8	1
7	23 Al(p, γ) ²⁴ S1	D	4.6	1
8	¹⁸ Ne(α , p) ²¹ Na	U	1.8	1
9	⁶³ Ga(p, γ) ⁶⁴ Ge	D	1.4	2
10	$^{19}F(p, \alpha)^{16}O$	U	1.3	2
11	$^{12}C(\alpha, \gamma)^{16}O$	U	2.1	2
12	${}^{26}{\rm Si}(\alpha, {\rm p}){}^{29}{\rm P}$	U	1.8	2
13	$^{17}F(\alpha, p)^{20}Ne$	U	3.5	2
14	24 Mg(α , γ) ²⁸ Si	Ū	1.2	2
15	57 Cu(p, $\gamma)$ 58 Zn	D	1.3	2
16	60 Zn(α , p) 63 Ga	U	1.1	2
17	$^{17}F(p, \gamma)^{18}Ne$	U	1.7	2
18	40 Sc(p, $\gamma)^{41}$ Ti	D	1.1	2
19	${}^{48}{\rm Cr}({\rm p},\gamma){}^{49}{\rm Mn}$	D	1.2	2

SUMMARY OF IMPORTANT (α,p) REACTIONS For A<34

These experiments require exotic beams!

STUDY OF (a,p) VIA THE TIME-INVERSE REACTION

Example for the ¹⁸Ne(α ,p)²¹Na reaction

STUDY OF (α, p) VIA THE TIME-INVERSE REACTION

The ¹⁸Ne(α ,p)²¹Na reaction

Used ${}^{21}Na(p,\alpha){}^{18}Ne$ to study the break-out reaction ${}^{18}Ne(\alpha,p){}^{21}Na$

ANL

S. Sinha, et al., ANL Internal report 2004

TRIUMF

P.J.C. Salter et al., PRL 108, 242701 (2012)

6

 10^{1}

 10^{0}

 10^{-1}

Cross Section (mb)

13

8

STUDY OF (α ,p) VIA THE TIME-INVERSE REACTION The ³⁰S(α ,p)³³Cl reaction

7

c. m. Energy (MeV)

Used ${}^{33}Cl(p,\alpha){}^{30}S$ to study the ${}^{30}S(\alpha,p){}^{33}Cl$ reaction

ANL

C.M Deibel et al.,PRC 84, 045802 (2011)

Also measured: $^{29}P(p,\alpha)^{26}Si$ $^{37}K(p,\alpha)^{34}Ar$ $^{25}Al(p,\alpha)^{22}Mg$

C.M Deibel et al., NICXI 56 (2010)

STUDY OF (a,p) VIA THE TIME-INVERSE REACTION

Limitations of previous measurements

- Only ground state to ground state transition
- Long time to measure a single energy point
- Difficult to tune the beam and to change energy
- Problems associated to low efficient detectors
- Uncertainties related to normalization of the cross section

Most of current models and studies are based on theoretical Hauser-Feschbach reaction rates

Need of more intense radioactive beams and more efficient detectors!

MEASUREMENTS WITH THE MUSIC DETECTOR AT ANL

Melina Avila, SOTANCP4 2018, May 15 2018

THE MUSIC DETECTOR

Multi-Sampling Ionization Chamber

MUSIC is an active target detector in where the counting gas serves as target and detector gas

- Highly efficient because segmented anode allows to measure large energy range with a single energy beam
- Self normalizing: No additional monitors for absolute normalization
- Counting gases: He, CH₄, Ne, Ar
- 34 channels
- Counting rate ~ 5 KHz

THE MUSIC DETECTOR

Fusion reactions: ¹²C+^{10,12,13,14,15}C

- Measured S factor at 12 energies with one beam energy
- Good agreement with theory

P. F.F Carnelli et al., PRL 112, 192701 (2014)

THE MUSIC DETECTOR

Event-by-event analysis

Example: ¹²C + ¹²C fusion

THE MUSIC DETECTOR

Calibration of the technique

- Chose the ¹⁷O(α,n)²⁰Ne reaction that has been measure before
- (α,p) is energetically forbidden
- Simulations showed is possible

Experimental information:

- ¹⁷O energy: 34.8 MeV
- Gas pressure: 200 Torr
- Beam intensity: 5000 pps

Calibration of the technique

The ${}^{17}O(\alpha,n){}^{20}Ne$ reaction with MUSIC

Successfully measured (α, n) with MUSIC!

M.L. Avila et al., Nucl. Inst. and Meth. A, 859, 63 (2017)

The ${}^{23}Na(\alpha,p){}^{26}Mg$ and ${}^{23}Na(\alpha,n){}^{26}AI$ reactions

- The ²³Na(α,p)²⁶Mg reaction directly influences the production of ²⁶Al in massive stars
- Important proton source for the ²⁵Mg(p,γ)²⁶AI

- The ²³Na(α,n)²⁶Al reaction important for the production of ²⁶Al in massive stars
- ²⁶Al(n,α)²³Na is one of the dominant destruction mechanisms of ²⁶Al

The ${}^{23}Na(\alpha,p){}^{26}Mg$ and ${}^{23}Na(\alpha,n){}^{26}AI$ reactions

- The experiment was performed in inverse kinematics
- Beam energies of 51.5 and 57.4 MeV
- Gas Pressure ~400 Torr

Melina Avila, SOTANCP4 2018, May 15 2018

The ${}^{23}Na(\alpha,p){}^{26}Mg$ and ${}^{23}Na(\alpha,n){}^{26}AI$ reactions

Identification of events from different reactions occurring in strip 4

The ²³Na(α ,p)²⁶Mg and ²³Na(α ,n)²⁶Al reactions

Measured (α ,p) and (α ,n) simultaneously in one day!

M. L. Avila et al., Phys. Rev. C 94, 065804 (2016)

The ²³Na(α ,p)²⁶Mg and ²³Na(α ,n)²⁶Al reactions

Our data agrees with previous measurements

M. L. Avila et al., Phys. Rev. C 94, 065804 (2016)

Our data agrees with Norman and Skelton but not Doukellis.

The ²³Na(α ,n)²⁶Al reaction

Reaction rate is higher than the previously recommended

M. L. Avila et al., Phys. Rev. C 94, 065804 (2016)

The ${}^{17}F(\alpha,p){}^{20}Ne$ reaction

- Ranked as one of the most important reactions for type I X-ray affecting the light curve and the composition of the ashes.
- The primary reactions that affect the ⁴⁴Ti production in core collapse supernovae

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	$^{15}\mathrm{O}(\alpha, \gamma)^{19}\mathrm{Ne}$	D	16	1
2	⁵⁶ Ni(α , p) ⁵⁹ Cu	U	6.4	1
3	59 Cu(p, γ) 60 Zn	D	5.1	1
4	${}^{61}\text{Ga}(\text{p}, \gamma){}^{62}\text{Ge}$	D	3.7	1
5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3	1
6	$^{14}O(\alpha, p)^{17}F$	D	5.8	1
7	$^{23}\text{Al}(p, \gamma)^{24}\text{Si}$	D	4.6	1
8	¹⁸ Ne(α , p) ²¹ Na	U	1.8	1
9	63 Ga(p, γ) 64 Ge	D	1.4	2
10	19 F(p, $\alpha)^{16}$ O	U	1.3	2
11	$^{12}\mathrm{C}(\alpha, \gamma)^{16}\mathrm{O}$	U	2.1	2
12	${}^{26}Si(\alpha, p){}^{29}P$	U	1.8	2
13	${}^{17}F(\alpha, p){}^{20}Ne$	U	3.5	2
14	$^{24}Mg(\alpha, \gamma)^{28}Si$	U	1.2	2
15	57 Cu(p, γ) 58 Zn	D	1.3	2
16	60 Zn(α , p) 63 Ga	U	1.1	2
17	${}^{17}F(p, \gamma){}^{18}Ne$	U	1.7	2
18	40 Sc(p, $\gamma)^{41}$ Ti	D	1.1	2
19	${}^{48}{ m Cr}({ m p},\gamma){}^{49}{ m Mn}$	D	1.2	2

R.H. Cyburt et al., ApJ 830, 55 (2016)

Melina Avila, SOTANCP4 2018, May 15 2018

The ${}^{17}F(\alpha,p){}^{20}Ne$ reaction

Particle ID

¹⁷F produced using the in-flight technique via the reaction ¹⁶O(d,n)¹⁷F

3.5f 2000 17F 10^{3} 1800 16 1600 2.4 10^{2} 1400 AE (MeV) Grid 1200 1000 10 800 600 0.4400 200 4001200 600 800 1000 9 10 11 12 13 14 15 16 8 3 7 2 5 6 Cathode Strip

Experimental traces

The ${}^{17}F(\alpha,p){}^{20}Ne$ reaction

The ${}^{17}F(\alpha,p){}^{20}Ne$ reaction

PERSPECTIVE

Measurement of important reactions for X ray bursts

- MUSIC can be used for measuring many other (α,p) reactions
- Upcoming upgrades like the Argonne In-flight Radioactive Ion Separator (AIRIS) and later the Facility for Rare Isotope Beams (FRIB) will give us access to exotic beams
- New improvements will allow us to increase the rate and study smaller cross sections

SUMMARY

- Nuclear reaction rates of (α,n) and (α,p) reactions are crucial in many astrophysical scenarios
- Upcoming upgrades in facilities will give us access to exotic beams which will allow us to study more exotic reactions
- The high efficient detector MUSIC offers great possibilities of study for direct measurements with radioactive beams
- The MUSIC detector has been successfully use for (α,n) and (α,p) reactions, such as the astrophysically important ²³Na(α,p)²⁶Mg and ²³Na(α,n)²⁶Al reactions and ¹⁷F(α,p)²⁰Ne.

COLLABORATORS

K.E. Rehm A.D. Ayangeakaa C. Dickerson **B.Digiovine** C.R. Hoffman C.L. Jiang B.P. Kay R.C. Pardo R. Talwar

O. Nusair

- D. Santiago-Gonzalez
- C. Ugalde

S. Almaraz-Calderon

J. Lai

THANK YOU!

