Competition between nucleon- and $\overline{K}NN$ cluster correlations in kaonic nuclear systems

Fourth International Workshop on "State Of Art in Nuclear Cluster Physics" (SOTANCP4) Galveston, TX, USA 2018.5.13-18

Wataru Horiuchi (Hokkaido Univ.)

Collaborators:

- S. Ohnishi, T. Hoshino (Hokkaido \rightarrow company)
- K. Miyahara (Kyoto \rightarrow company)
- T. Hyodo (YITP, Kyoto)

Kaonic nuclei (Nucleus with antikaon)

• Λ(1405); J^π=1/2⁻, S= -1

- uds constituent quark model
 - Energy is too high
- $-\overline{K}N \text{ quasi-bound state} \xrightarrow{\text{Isgur, Karl, PRD 18, 4187(1978)}}_{\text{PR 153, 1617 (1967)}}$ $\rightarrow \text{ strongly attractive } \overline{K}N \text{ interaction}$

Does Kaonic nucleus really exist? E15 exp. Y. Sada *et al.*, Prog. Theor. Exp. Phys. **2016**, 051D01 (2016). Can such a high density system be produced in laboratory? $\rightarrow \overline{K}N$ interaction is essential!

 \bar{K}

Outline

- Precise few-body calculations for kaonic nuclear systems S. Ohnishi, WH, T. Hoshino, K. Miyahara, T. Hyodo, Phys. Rev. C 95, 065202 (2017)
 - Modern $\overline{K}N$ interaction K. Miyahara, T. Hyodo, PRC93 (2016)
 - Structure of kaonic nuclei
 - $\overline{K}NN$ to $\overline{K}NNNNN$ (7-body)
 - **Clustering**: competition between 4N and $\overline{K}NN$ correlations Variational calculations with correlated Gaussian method

Choice of \overline{KN} interaction

Kyoto KN potential K.Miyahara, T.Hyodo, PRC 93, 015201 (2016)

- > Energy-dependent $\overline{K}N$ single-channel potential
- Chiral SU(3) dynamics at NLO
- Pole energy: 1424 26i and 1381 81i MeV Y.Ikeda, T.Hyodo, W.Weise, NPA881 (2012) 98
- Consistent with the recent kaonic hydrogen data SIDDHARTA: Bazzi+2012, NPA881
- $\overline{K}N$ two-body energy in an N-body system are determined as:

$$\sqrt{s} = m_N + m_{\bar{K}} + \delta \sqrt{s} , \quad -B_K \equiv \langle \Psi | H | \Psi \rangle - \langle \Psi | H_N | \Psi \rangle ,$$

Type I: $\delta\sqrt{s} = -B_K$, Type II: $\delta\sqrt{s} = -B_K/(N-1)$, for *N*-body

1/3 "Particle picture"

"Field picture"

A. Dote, T. Hyodo, W. Weise, NPA804, 197 (2008).

Akaishi-Yamazaki (AY) potential Akaishi, Yamazaki, PRC65, 04400(2002).

- Energy-independent
- > Reproduce $\Lambda(1405)$ as \overline{KN} quasi-bound state

Kaonic nuclear systems (3 to 7-body)

 $H = \sum_{i=1}^{\mathcal{N}} T_i - T_{\rm cm} + \sum_{i < i}^{\mathcal{N}-1} V_{ij}^{(NN)} + \sum_{i=1}^{\mathcal{N}-1} V_{i\mathcal{N}}^{(\bar{K}N)} + \sum_{i=i}^{\mathcal{N}} V_{ij}^{\rm Coul.}$

- Hamiltonian
- Basis expansion with correlated Gaussian basis:
 Formulation for N-particle system
 Functional form unchanged under any coordinate trans. X1

$$\Phi_{SM_SM_T}(x,A) = \mathscr{A}\{\exp(-\widetilde{x}Ax)\chi_{SM_S}\eta_{M_T}\},\$$

$$\tilde{x}Ax = \sum_{i,j=1}^{N-1} A_{ij}x_i \cdot x_j$$

 $y = Tx \implies \widetilde{y}By = \widetilde{x}\widetilde{T}BTx$

Y₃

Y₂

Y₁

- Many parameters \sim (N-1)(N-2)/2 × (# of basis)

→ Stochastically selected K. Varga and Y. Suzuki, PRC52, 2885 (1995).

• Choice of NN potential (AV4', ATS3, MN)

All *NN* interaction models reproduce the binding energy of *s*-shell nuclei

Energy curves

- Optimization only with a real part of the $\overline{K}N$ pot.
- Two-body $\overline{K}N$ energy is selfconsistently determined
- AV4' NN pot. is employed

Validity of this approach is confirmed in the three-body (K⁻pp) system

Properties of K⁻pp (AV4' pot.)

Model	Ky	Kyoto		
	Type I	Type II		
B (MeV)	27.9	26.1	48.7	
Γ (MeV)	30.9	59.3	61.9	
$\delta\sqrt{s}$ (MeV)	-61.0 - i25.0	-30.2 - i23.7		
$P_{K^{-}}$	0.65	0.65	0.64	
$P_{ar{K}^0}$	0.35	0.35	0.36	
$\sqrt{\langle r_{NN}^2 \rangle}$ (fm)	2.16	2.07	1.84	
$\sqrt{\langle r_{\bar{K}N}^2 \rangle}$ (fm)	1.80	1.73	1.55	
$\sqrt{\langle r_N^2 \rangle}$ (fm)	1.12	1.08	0.958	
$\sqrt{\langle r_{\vec{K}}^2 \rangle}$ (fm)	1.14	1.10	0.988	

Kyoto *KN* **pot.** Similar binding energies with Types I and II B~26-28 MeV Γ~30-60 MeV

AY pot.

Deeper binding energy \sim 49MeV

 \rightarrow Smaller rms radii

Systematics of $\overline{K}XN$ (X=2-6) systems

	$\overline{K}NN$	$\overline{K}NNN$	K NNNN	<i>K</i> NNNNNN
B (MeV)	26-28	45-50	68-76	70-81
Г (MeV)	31-59	26-70	28-74	24-76

Bound states appear below subthresholds: $B \sim \Gamma$

- \succ Central nucleon density $\rho(0)$ is enhanced by kaon
- \succ Not always proportional to B \rightarrow tail of w.f.

 $\geq \rho(0)^{-3}$ at maximum, ~ 2 times higher than that without \overline{K} (~ 4 times higher than the saturation dens.)

NN interaction dependence

Not sensitive to the NN interaction models

Nucleon density distributions

Strong \overline{KN} correlation in \overline{KXN} systems: Structure of \overline{KNN} & $\overline{KNNNNNN}$

 $\succ KN$ interaction in I=0 is more attractive than in I=1

 \rightarrow Energy gain in J=0 is larger than that in J=1

> AY potential in I=0 is strongly attractive

 \rightarrow J=0 ground state

 $\overline{K}N$ correlations > NN correlations

 \overline{KN} interaction plays a decisive role to determine the structure.

Strong NN correlations: α cluster in $\overline{K}NNNN$

• $J^{\pi}=0^{-}$, I=1/2, $I_z=-1/2$ Mixture of $K^{-}ppnn$ and $\overline{K^0}pnnn$ states

- $P_1:P_2=0.93:0.07$
 - Channel 1 can form α cluster
 - KN correlations < NN correlations</p>

Summary & perspectives

Precise few-body calculations for kaonic nuclear systems

- Kaonic nucleus (3- to 7-body)

S. Ohnishi, WH, T. Hoshino, K. Miyahara, T. Hyodo, Phys. Rev. C95, 065202 (2017)

- Central density is increased by \sim 2 times higher (4 times than ρ_0)
 - Soft NN interaction induces too high central densities
 - Possible extensions
 - » Explicit inclusion of the tensor and three-body forces
 - » Explicit coupling of $\pi\Sigma$ and $\pi\Lambda$ channels K. Miyahara, T. Hyodo, W. Weise, arXiv: 1804.08269
- Competition between $\overline{K}NN$ and 4N correlations
 - Strong NN correlations in $\overline{K}NNNN$ systems (α correlation)
 - Spin-parity of the g.s, of ⁶Li \overline{K} (degenerate?, inverted?)

Strength and its isospin dependence of $\overline{K}N$ interaction is essential

Kaonic deuterium

Kaonic deuterium (3-body) T. Hoshino, S. Ohnishi, WH, T. Hyodo, W. Weise, Phys. Rev. C 96, 045204 (2017)

Prediction of the energy shift of the kaonic deuterium

$$\Delta E - i\frac{\Gamma}{2} = (670 - i\,508)\,\mathrm{eV},$$

Promising observable to constraint the I=1 component of the \overline{KN} interaction complimentary to the kaonic hydrogen data (SIDDHARTA: Bazzi+2012, NPA881)