Low Energy Gamow-Teller Transitions in deformed N = Z odd-odd Nuclei

Hiroyuki Morita (Kyoto Univ.) Yoshiko Kanada-En'yo (Kyoto Univ.)

Gamow-Teller operator as a probe for spin-isospin-flip phenomena

- The Gamow-Teller(GT) operator flips spin(s) and $isospin(\tau)$.
- For free NN particle, the GT strength is $B(GT) \approx 6$.
- Even for *NN* with core nucleus, B(GT) should be large if the core nuclei have S = 0 and T = 0 (saturated).

1 Fig. 1 from Y. Fujita et al., Phys. Rev. Lett. 112, 112502 (2014)

Super allowed GT transitions $(0_1^+1 \rightarrow 1_n^+0)$ in *p*- and *sd*- shell deformed nuclei (experiment)

- Strong GT transitions $0^+1 \rightarrow 1^+0$ are found.
- The strength from ¹⁰C is concentrated to 1_1^+0 while that from ²²Mg splits into $1_{1,2}^+0$.
- The sums of the B(GT) have comparable values between ¹⁰C and ²²Mg.

Aim of this work

- The fragmentations in $GT(0_1^+1 \rightarrow 1_n^+0)$ strengths of *p*- and *sd*- N = Z = odd nuclei
 - » Precursors for multi-fragmentations in heavier nuclei (including pf-shell)
 - » Dependence for deformation and LS interactions

• The detailed descriptions for final 1^+0 states

- » Band structure caused by deformation and pn-pair correlation
- » Comparison with Nilsson orbit

• The difference between *p*-(¹⁰B) and *sd*-shell(²²Na)

- » Existence of cluster structures
- » The correspondence between the 2⁺ states on g.s.-band and 1⁺ final states

The framework of isospin projected AMD + GCM

Wave function

$$\begin{split} |\Phi\rangle &= \mathcal{A} |\phi_1\rangle |\phi_2\rangle \dots |\phi_A\rangle \\ |\phi_i\rangle &= \left(\frac{2\nu}{\pi}\right)^{\frac{4}{3}} \exp\left[-\nu \left(\boldsymbol{r}_i - \frac{\boldsymbol{Z}_i}{\sqrt{\nu}}\right)^2\right] |\xi_i\rangle |n_i\rangle \end{split}$$

 $|n_i\rangle = |p\rangle$ or $|n\rangle$ $\nu = 0.235 \text{ fm}^{-2} p$ -shell 0.16 fm⁻² sd-shell

A. Ono, H. Horiuchi, T. Maruyama and A. Onishi, Phys. Rev. Lett. 68 2898 (1992).

Hamiltonian

$$H = H_{\rm phys} + H_{\rm const}$$

$$H_{\text{const}} = \eta_1 [(\beta \cos \gamma - X)^2 + (\beta \sin \gamma - Y)^2]$$

T. Suhara and Y. Kanada-En'yo, Prog. Theor. Phys. 123, 303 (2010).

ightarrow control nuclear deformation and spatial development of the pn pair

Energy variation & GCM HM and Y. Kanada-En'yo, Prog. Theor. Exp. Phys. 2016, 103D02 (2016)

$$\delta \frac{\left\langle \Phi \middle| H P^{\pi} \mathbf{P}^{T} \middle| \Phi \right\rangle}{\left\langle \Phi \middle| P^{\pi} \mathbf{P}^{T} \middle| \Phi \right\rangle} = 0 \quad |\Psi\rangle = \sum_{i} c_{i} |\Phi_{i}\rangle \\ \rightarrow \text{control the isospin of the } pn \text{ pair in valence orbit}$$

SOTANCP4

Hamiltonian

$$H_{\text{phys}} = K - K_{\text{cm}} + \sum_{i < j} v_{\text{c}}^{ij} + \sum_{i < j} v_{\text{ls}}^{ij} + \sum_{i < j} v_{\text{Coulomb}}^{ij}$$
Volkov No2

$$v_{\text{c}}^{ij} = \left\{ v_1 \exp\left[-\left(\frac{r_{ij}}{a_1}\right)^2 \right] + v_2 \exp\left[-\left(\frac{r_{ij}}{a_2}\right)^2 \right] \right\} (w + bP_{\sigma} - hP_{\tau} - mP_{\sigma}P_{\tau})$$

$$v_1 = -60.65 \text{ MeV} \quad a_1 = 1.80 \text{ fm} \quad w = 0.40$$

$$v_2 = 61.14 \text{ MeV} \quad a_2 = 1.01 \text{ fm} \quad b = h = 0.06$$
LS part of G3RS

$$v_{\text{ls}}^{ij} = \left\{ u_1 \exp\left[-\left(\frac{r_{ij}}{b_1}\right)^2 \right] + u_2 \exp\left[-\left(\frac{r_{ij}}{b_2}\right)^2 \right] \right\} \frac{1 + P_{\sigma}}{2} \frac{1 + P_{\sigma}P_{\tau}}{2} l_{ij} \cdot s_{ij}$$

 $u_1 = -u_2 = 1300$ MeV on AMD variation $u_1 = -u_2 = 0-2600$ MeV on GCM for analysis $b_1 = 0.60 \text{ fm}$ $b_2 = 0.447 \text{ fm}$

SOTANCP4

Fragmentation of GT strength in ¹⁰B and ²²Na

Fragmentation of GT strength in ¹⁰B and ²²Na

• $B(GT; 2_1^+1 \to 1_2^+0) = 0.37$

Spatial development of the pn pair and K-quanta

• Deformation parameter can be mapped into spin-orbit interaction strength(v_{ls}).

• We change v_{ls} on GCM diagonalization from 0 MeV to 2600 MeV for same GCM bases.

2017/05/17

SOTANCP4

Summary

- We have studied GT strengths by comparing $p-(^{10}B)$ with sd-shell(^{22}Na) in this work.
 - » The fragmentations in $GT(0_1^+1 \rightarrow 1_n^+0)$ strengths of *p*- and *sd*- N = Z = odd nuclei
 - There is no fragmentation for ${}^{10}B(0_1^+1 \rightarrow 1_1^+0)$
 - ► GT strengths are fragmented into 2 states for ${}^{22}Na(0_1^+1 \rightarrow 1_{1,2}^+0)$.
 - ▶ weak deformation and strong *LS* interaction causes GT fragmentation.

» The detailed descriptions for final 1^+0 states

- ${}^{10}B(1_1^+0)$ has cluster structure 2α +pn.
- K = 0,1 bands are found for ${}^{22}Na(1^+_{1,2}0)$.
- K = 0,1 band heads $(1_{1,2}^+ 0)$ correspond to Nilsson orbit $[211 + 3/2]^n [211 - 3/2]^p$ and $[211 + 3/2]^n [211 - 3/2]^p$.