Clustering in A=11-13 Nuclei

Thomas Neff GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt

Fourth International Workshop on "State Of the Art in Nuclear Cluster Physics" May 13-18, 2016 Galveston, USA

HELMHOLTZ

| **=** ,', | ,',

Cluster States in the Neighborhood of 12C

- The Hoyle state in ¹²C has been one of the central topics of previous SOTANCP conferences and the cluster community in general
- alpha-cluster models for ¹²C are successful in describing many properties of the ground state band and the cluster states including the Hoyle state

Is ¹²C and the Hoyle state special ?

- The lowest threshold in ¹²C is the three-alpha threshold, and alphas are "good" clusters, ⁸Be is essentially a two-alpha system
- The decay of cluster states however is happening mainly through the ⁸Be+alpha channel, ⁸Be+alpha configurations can be used to describe cluster states in ¹²C

What about ¹¹C and ¹³N ?

- alpha-cluster models obviously do not work, we will combine FMD with explicit cluster configurations
- In ¹¹C the ⁷Be+⁴He is the first open channel, ⁸Be+³He is not far away
- Can we understand the low-lying positive parity states?
- in ¹³N it gets even more complicated due to the low-lying proton threshold, alpha-clustered states might be expected close to the ⁹B+⁴He threshold

Fermionic Molecular Dynamics

Fermionic

Intrinsic many-body states

 $|Q\rangle = \hat{\mathcal{A}}\{|q_1\rangle \otimes \cdots \otimes |q_A\rangle\}$

are antisymmetrized A-body states

Molecular

Single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}} \right\} \otimes |\chi_{i}^{\uparrow}, \chi_{i}^{\downarrow}\rangle \otimes |\xi\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width *a_i* is an independent variational parameter for each wave packet
- use one or two wave packets for each single particle state

FMD basis contains **harmonic oscillator shell model** and **Brink-type cluster** configurations as limiting cases

Projection after Variation

Variation and Projection

- minimize the energy of the intrinsic state
- intrinsic state may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, angular (and linear) momentum

Generator coordinates

 use generator coordinates (radii, quadrupole or octupole deformation, strength of spin-orbit force) to create additional basis states

$$\hat{P}^{\pi} = \frac{1}{2}(1 + \pi \hat{\Pi})$$

$$\hat{P}_{MK} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J} (\Omega) \hat{R}(\Omega)$$

$$\hat{P}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \exp\{-i(\hat{\mathbf{P}} - \mathbf{P}) \cdot \mathbf{X}\}$$

Variation after Projection

Variation after Projection

- Correlation energies can be quite large for well deformed and/or clustered states
- For light nuclei it is possible to perform real variation after projection
- Can be combined with generator coordinate method

Multiconfiguration Mixing

- Set of N intrinsic states optimized for different spins and parities and for different values of generator coordinates are used as basis states
- Diagonalize in set of projected basis states

Variation

$$\min_{\{q_{\nu}\}} \frac{\langle Q | \hat{H} - \hat{T}_{cm} | Q \rangle}{\langle Q | Q \rangle}$$

Variation after Projection

$$\min_{\{q_{\nu},c^{\alpha}_{K}\}} \frac{\sum_{KK'} c^{\alpha}_{K} {}^{*} \langle Q | (\hat{H} - \hat{T}_{cm}) \hat{P}^{\pi} \hat{P}^{J}_{KK'} | Q \rangle c^{\alpha}_{K'}}{\sum_{KK'} c^{\alpha}_{K} {}^{*} \langle Q | \hat{P}^{\pi} \hat{P}^{J}_{KK'} | Q \rangle c^{\alpha}_{K'}}$$

(Intrinsic) Basis States

$$\left\{ \left| Q^{(a)} \right\rangle, a = 1, \ldots, N \right\}$$

Generalized Eigenvalue Problem

$$\sum_{K'b} \underbrace{\langle Q^{(\alpha)} | \hat{H} \hat{P}^{\pi} \hat{P}^{J}_{KK'} \hat{P}^{\mathbf{P}=0} | Q^{(b)} \rangle}_{\text{Hamiltonian kernel}} C^{\alpha}_{K'b} = E^{J^{\pi}\alpha} \sum_{K'b} \underbrace{\langle Q^{(\alpha)} | \hat{P}^{\pi} \hat{P}^{J}_{KK'} \hat{P}^{\mathbf{P}=0} | Q^{(b)} \rangle}_{\text{norm kernel}} C^{\alpha}_{K'b}$$

Cluster States in ¹²C

FMD and Cluster Model Calculations

¹²C: FMD + ⁸Be-⁴He Cluster Configurations

H

4

Radius

¹²C: Spectrum including Continuum

 FMD provides a consistent description of *p*-shell states, negative parity states and cluster states

¹²C: ⁸Be-α Spectroscopic Amplitudes

- Ground state overlap with $^{8}Be(0^{+})+\alpha$ and $^{8}Be(2^{+})+\alpha$ configurations of similar magnitude
- Hoyle state overlap dominated by $^{8}Be(0^{+})+\alpha$ configurations, large spatial extension

Cluster States in ¹¹C

FMD + Cluster Configurations

¹¹C: Outline of Calculation

I) FMD Calculation using VAP basis states

- Perform VAP calculations for the first couple of eigenstates for each spin and parity
- Can we observe the appearance of cluster structures?
- This provides only a relatively small set of basis states especially for loosely bound and spatially extended states

II) Cluster model calculations with ⁷Be-⁴He and ⁸Be-³He configs

- ⁷Be(3/2-,1/2-) clusters described using a superposition of ⁷Be(3/2-) VAP state and an extended ⁴He-³He config
- ⁸Be(0+,2+) clusters described using a superposition of ⁸Be(0+) VAP state and an extended ⁴He-⁴He config
- Double-projection of ⁷Be-⁴He and ⁸Be-³He configs at distances of D=1.5, ..., 9.0 fm

III) Full calculation with combined FMD and Cluster basis states

- Basis is overcomplete
- Cluster configs become orthogonal at large distances where the overlap between the clusters vanishes

¹¹C: FMD Variation after Projection

p-shell states with some hint of clustering

¹¹C: FMD Variation after Projection

states with well defined cluster structure

¹¹C: Diagonalization with FMD VAP States

clustered states are well above threshold

¹¹C: FMD vs Cluster Model

¹¹C: FMD plus Cluster Model

improves both p-shell and clustered states

¹¹C: FMD vs Full Calculation

consistent picture of p-shell and clustered states

¹¹C: Cluster Ovlaps

	⁷ Be(3/2 ⁻)- ⁴ He	⁷ Be(3/2 ⁻ ,1/2 ⁻)- ⁴ He	⁸ Be(0+)- ³ He	⁸ Be(0+,2+)- ³ He
3/2-	0.83	0.85	0.62	0.82
1/2-	0.86	0.88	0.62	0.79
5/2 ⁻	0.81	0.82	0.01	0.78
second 3/2-	0.76	0.86	0.14	0.82
third 3/2-	0.76	0.80	0.11	0.37
1/2+	0.72	0.86	0.56	0.77
5/2+	0.88	0.90	0.54	0.77

- Be careful with interpretation because of antisymmetrization a large overlap with cluster configurations does not necessarily mean that the state is well clustered
- More interesting than these spectroscopic factors would be spectroscopic amplitudes / ANCs / alpha-widths — work in progress
- What is the Hoyle analogue state the 1/2⁺ or the third 3/2⁻ or neither?

Summary and Outlook

Summary

- FMD calculations find pronounced clustering in ¹¹C in positive parity states and the third 3/2⁻ state
- The description of these states around the ⁷Be+⁴He threshold can be significantly improved by combing the FMD basis states with ⁷Be+⁴He and ⁸Be+³He cluster configurations using double-projection
- The third 3/2⁻ state above the threshold with its ⁷Be(3/2⁻)+⁴He structure looks similar to the Hoyle state with its ⁸Be+⁴He structure
- The 1/2+ state below the threshold has a significant ⁸Be(0+)+³He contribution that could be interpreted as the analogue of the Hoyle where three clusters are found mostly in relative S-wave

Outlook

- Investigate the ¹³N structure technical difficulties due to large number of states in the interesting region and contributions from ¹²C+p continuum
- Treatment of continuum exact R-matrix formulation for scattering requires wave functions with wave-packets of equal width (within each cluster) that can be rewritten as RGM wave functions — alternative in GCM picture possible?
- Look at observables like EM and weak transition strengths, ANCs and alpha-widths