Characteristic decay patterns of the Linear-chain states in Carbon isotopes

> <u>T.Baba</u> and M.Kimura Hokkaido University

Linear-chain with valence neutrons

Linear-chain configuration of 3α clusters was suggested in 1950s.

Morinaga, Phys. Rev. 101, 254 (1956).

Positive evidences have not been obtained, and linear-chain of 3α is unstable against the bending motion.

Y. Kanada-En'yo, Prog. Theor. Phys. 115, 655 (2007).

M. Chernykh et al., Phys. Rev. Lett. 98, 032501 (2007).

Instead of ¹²C, neutron-rich C isotopes have attracted much interest because valence neutrons play a "glue-like" role.

N. Itagaki and S. Okabe, Phys. Rev. C 61, 044306 (2000).

Linear-chain with valence neutrons

Linear-chain configuration of 3α clusters was suggested in 1950s.

Morinaga, Phys. Rev. 101, 254 (1956).

Positive evidences have not been obtained, and linear-chain of 3α is unstable against the bending motion.

to neutron-rich C isotopes.

<u>Y. Kanada-En'yo, Prog. Theor. Phys. 115, 655 (2007).</u>

M. Chernykh et al., Phys. Rev. Lett. 98, 032501 (2007).

Instead of ¹²C, neutron-rich C isotopes have attracted much interest because valence neutrons play a "glue-lik Naturally, this idea is applied

N. Itagaki and S.

Ex) Be isotope (2α)

⁸Be : Unbound

¹⁰Be : Stable

Linear-chain with valence neutrons

Linear-chain configuration of 3α clusters was suggested in 1950s.

Morinaga, Phys. Rev. 101, 254 (1956).

Positive evidences have not been obtained, and linear-chain of 3α is unstable against the bending motion.

to neutron-rich C isotopes.

Y. Kanada-En'yo, Prog. Theor. Phys. 115, 655 (2007).

M. Chernykh et al., Phys. Rev. Lett. 98, 032501 (2007).

Instead of ¹²C, neutron-rich C isotopes have attracted much interest because valence neutrons play a "glue-lik Naturally, this idea is applied

N. Itagaki and S.

Ex) Be isotope (2α)

⁸Be : Unbound

¹⁰Be : Stable

Experiments of ¹⁴C

Recently, very interesting experimental data have been reported by some groups.

 $\alpha(^{10}\text{Be}, \alpha)^{10}\text{Be}$ resonant scattering

<u>M. Freer *et al.*, Phys. Rev. C **90**, 054324 (2014).</u> A. Fritsch *et al.*, Phys. Rev. C **93**, 014321 (2016). H. Yamaguchi *et al.*, Phys. Lett. B **766**, 11-16 (2017).

⁹Be(⁹Be, ¹⁴C*→α+ ¹⁰Be)⁴He break-up
Z. Y. Tian *et al.*, Chin. Phys. C 40, 111001 (2016).
J. Li *et al.*, Phys. Rev. C 95, 021303 (2017).

Experiments of ¹⁴C

Recently, very interesting experimental data have been reported by some groups.

 $\alpha(^{10}\text{Be}, \alpha)^{10}\text{Be}$ resonant scattering

<u>M. Freer *et al.*, Phys. Rev. C **90**, 054324 (2014).</u> A. Fritsch *et al.*, Phys. Rev. C **93**, 014321 (2016). H. Yamaguchi *et al.*, Phys. Lett. B **766**, 11-16 (2017).

Observed resonances are close each other in spite of independent observation. In addition, they also agree with the theoretical prediction. <u>T. Suhara and Y. Kanada-En'yo, Phys. Rev. C 82, 044301 (2010).</u>

Experiments of ¹⁴C

Recently, very interesting experimental data have been reported by some groups.

 $\alpha(^{10}\text{Be}, \alpha)^{10}\text{Be}$ resonant scattering

M. Freer *et al.*, Phys. Rev. C 90, 054324 (2014).
A. Fritsch *et al.*, Phys. Rev. C 93, 014321 (2016).
H. Yamaguchi *et al.*, Phys. Lett. B 766, 11-16 (2017).

⁹Be(⁹Be, ¹⁴C*→α+ ¹⁰Be)⁴He breakup
<u>Z. Y. Tian *et al.*, Chin. Phys. C 40, 111001 (2016).</u>
J. Li *et al.*, Phys. Rev. C 95, 021303 (2017).

Experiments (Breakup Reaction)

Experiments (Breakup Reaction)

Schematic picture of Linear-chain

By comparison with the new data, the unique decay pattern of two types of the linear-chain can be found and identified.

We investigate the linear-chain configuration of ^{14}C and ^{16}C

- (1) To confirm that the agreement between the observation and calculated π -bond linear-chain band is plausible by comparison with new some data in ¹⁴C
- (2) To show that the observed unique decay pattern of the resonances reported by Li *et al.* is similar to that of the calculated σ -bond linear-chain in ¹⁴C
- ③ To predict the existence and details of linear-chain in ¹⁶C for experimental data which will be reported

J.F.Berger, M.Girod, and D.Gogny, Comput. Phys. Comm. 63 (1991) 365.

Effective interaction

<u>Gogny D1S</u> interaction is exploited.

$$\widehat{H} = \sum_{i} \widehat{t}_{i} - \widehat{t}_{cm} + \sum_{i < j} \widehat{v}_{ij}^{NN} + \sum_{i < j \in p} \widehat{v}_{ij}^{Coulomb}$$

Intrinsic wave function

Single particle w.f. is the <u>deformed Gaussian</u>.

$$\Phi^{\pi} = \hat{P}^{\pi} \frac{1}{\sqrt{A!}} \det \left[\varphi_{i}(\vec{r}_{j}) \right] \qquad \varphi_{i}(\vec{r}) = \exp \left[-\sum_{\sigma=x,y,z} v_{\sigma} \left(r_{\sigma} - \frac{Z_{i\sigma}}{\sqrt{v_{\sigma}}} \right)^{2} \right] \otimes a_{i} \chi_{\uparrow} + b_{i} \chi_{\downarrow} \otimes \tau_{i}$$

Variation

The variation parameters (\vec{Z}_i , a_i , b_i , v) are determined so that E^{π} , which is a sum of the energy and constraint potential is minimized.

$$\mathbf{E}^{\pi} = \frac{\left\langle \Phi^{\pi} \middle| \widehat{H} \middle| \Phi^{\pi} \right\rangle}{\left\langle \Phi^{\pi} \middle| \Phi^{\pi} \right\rangle} + v_{\beta} (\left\langle \beta \right\rangle - \beta)^{2} + v_{\gamma} (\left\langle \gamma \right\rangle - \gamma)^{2}$$

AMD+GCM

Angular momentum projection

After the variational calculation, the eigenstate of the total angular momentum is projected out.

$$\Phi_{\rm MK}^{J\pi}(\beta,\gamma) = \widehat{P}_{\rm MK}^{J} \Phi^{\pi}(\beta,\gamma) = \frac{2J+1}{8\pi^2} \int d\Omega \, D_{\rm MK}^{J*}(\Omega) \widehat{R}(\Omega) \Phi^{\pi}(\beta,\gamma)$$

GCM

D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

The GCM calculation is performed by employing the quadrupole deformation parameters β , γ as the generator coordinate.

$$\Psi_{Mn}^{J\pi} = \sum_{i,K} c_{Kin}^{J\pi} \Phi_{MK}^{J\pi}(\beta_i, \gamma_i) \qquad \sum_{i',K'} H_{KiK'i'} c_{K'i'n}^{J\pi} = E_n \sum_{i',K'} N_{KiK'i'} c_{K'i'n}^{J\pi}$$
$$\left[\begin{array}{c} H_{KiK'i'} = \left\langle \Phi_{MK}^{J\pi}(\beta_i, \gamma_i) \middle| \widehat{H} \middle| \Phi_{MK'}^{J\pi}(\beta_{i'}, \gamma_{i'}) \right\rangle \\ N_{KiK'i'} = \left\langle \Phi_{MK}^{J\pi}(\beta_i, \gamma_i) \middle| \Phi_{MK'}^{J\pi}(\beta_{i'}, \gamma_{i'}) \right\rangle \end{array}\right]$$

Comparison with resonant scattering

Comparison with resonant scattering

Comparison with breakup reaction

Comparison with breakup reaction

To clarify the configuration of the observed resonances, we focused on the decay patterns of two linear-chain state.

Revised schematic picture

Summary T.B. and M. Kimura, Phys. Rev. C 95, 064318 (2017). T.B. and M. Kimura, arXiv:1801.05323.

- Using the AMD, we show that the excitation energies and α -decay widths of π -bond linear-chain in ¹⁴C are close to the experimental values.
- The σ -bond linear-chain states can be good candidates of high-lying states. In addition, ⁶He+2 α three-body sequence decay is its plausible signature.
- The linear-chain also decays to the ^{8,10}Be(2⁺) as well as to the ground state of ^{8,10}Be. This is a strong evidence of the linear-chain.
- In ¹⁶C, the excitation
 energies and decay widths
 of linear-chain are obtained.
 We also provide some
 evidences for the existence
 of linear-chain configuration.

Excitation spectrum of ¹⁶C

Decay widths of ¹⁶C

Decay widths of ¹⁶C

Why Linear-Chain Decay to 2⁺?

> We show that linear-chain structure decays to ${}^{10}\text{Be}(2^+)$

Decay patterns depend on cluster structure

Y. Suzuki, H. Horiuchi, and K. Ikeda, Prog. Theor. Phys. Vol 47, No. 5 (1972).

Why Linear-Chain Decay to 2+?

> We show that linear-chain structure decays to ${}^{10}\text{Be}(2^+)$

angular momentum: J = 0 \longrightarrow wave function is isotropic

Why Linear-Chain Decay to 2⁺?

If ¹⁴C decays to only ¹⁰Be(0^+)...

Why Linear-Chain Decay to 2⁺?

Linear-chain does NOT include them!

Linear-chain does <u>not</u> <u>only</u> decay to ${}^{10}Be(0^+)$.