

Florida State University

In collaboration with K. Kravvaris DOE support: DE-SC0009883

SOTANCP4, TX

Clustering in light nuclei

Clustering and continuum

Key elements of discussion

- Configuration interaction approach and clustering
 - Cl approach
 - Center of mass boost
 - Relation to SU(3) limit
 - Recoupling CM motion and cluster channels
 - Examples
- Assessing clustering characteristics
 - Traditional (old) spectroscopic factors
 - Orthonormalized (Fliessbach) spectroscopic factors
 - Resonating Group Method (RGM) solutions
 - J-matrix and phase shifts
- Examples
 - Traditional shell model successes and problems
 - Clustering in models from ab-initio principles

Configuration interaction approach and clustering

Traditional shell model configuration m-scheme

Cluster configuration SU(3)-symmetry basis

Antisymmetrization state-operator polymorphism

State, equivalent to operator (polymorphism)

$$|\Psi\rangle \equiv \hat{\Psi}^{\dagger}|0\rangle = \sum_{\{1,2,3,\dots,A\}} \langle 1,2\dots A|\Psi\rangle \,\hat{a}_{1}^{\dagger}\hat{a}_{2}^{\dagger}\dots\hat{a}_{A}^{\dagger}|0\rangle$$

$$|\Psi_{\alpha}\rangle = \Psi_{\alpha}^{\dagger}|\rangle = \sum_{\{m\}} X_{m}^{\alpha} a_{m_{1}}^{\dagger} a_{m_{2}}^{\dagger} a_{m_{3}}^{\dagger} a_{m_{4}}^{\dagger}|\rangle$$
$$|\Psi_{\rm D}\rangle = \Psi_{\rm D}^{\dagger}|\rangle = \sum_{\{m\}} X_{m}^{\rm D} a_{m_{1}}^{\dagger} a_{m_{2}}^{\dagger} \dots a_{m_{\rm A_{\rm D}}}^{\dagger}|\rangle$$

Anti-symmetrized channel wave function components are generated by acting with state creation operator and forward ordering.

$$|\Psi_{\rm C}\rangle = \Psi_{\alpha}^{\dagger}\Psi_{\rm D}^{\dagger}|\rangle$$

Code at http://www.volya.net [cosmo]

Translational invariance and Center of Mass (CM)

Shell model, Glockner-Lawson procedure

Center-of-Mass boosts

 $\Psi_{n\ell m} = \phi_{n\ell m}(\mathbf{R}) \Psi'$ $\mathcal{B}^{\dagger}_{and} \mathcal{B}^{CM}$ quanta creation and annihilation (vectors) $\Psi_{n+1\ell m} \propto \mathcal{B}^{\dagger} \cdot \mathcal{B}^{\dagger} \Psi_{n\ell m}$ $\mathcal{B}^{\dagger} \times \mathcal{B}$ CM angular momentum operator

$$N = 2n + \ell$$

	lpha[0]	$\alpha[4]$
Configuration	$N_{ m max}=0$	$N_{ m max}=4$
$(sd)^4$	0.038	0.035
$(p)(sd)^2(pf)$	0.308	0.282
$(p)^{2}(pf)^{2}$	0.103	0.094
$(p)^2(sd)(sdg)$	0.154	0.141
$(s)^2(sd)(sdgi)$	0.000	0.005
(p)(sd)(pf)(sdg)	0.000	0.009

Select configuration content of NCSM wave functions for ⁴He with $\Omega = 20$ MeV boosted by 8 quanta (L = 0).

K Kravvaris and A. Volya, Journal of Phys, Conf. Proc. 863, 012016 (2017)

Approximation of N_{max}=0 (s⁴) **Cluster coefficients for SU(3) components**

Expand SU(3) 4-nucleon structure in intrinsic+ relative all oscillator quanta of excitation are in relative motion.

$$\phi_{n\ell m}(\mathbf{R}_{\alpha})\Psi_{\alpha}' = \sum_{\eta} X_{n\ell}^{\eta} \Phi_{(n,0):\ell m}^{\eta}$$
$$X_{n\ell}^{\eta} \equiv \langle \Phi_{(n,0):\ell m}^{\eta} | \phi_{n\ell m}(\mathbf{R}_{\alpha}) \Psi_{\alpha}' \rangle = \sqrt{\frac{1}{4^{n}} \frac{n!}{\prod_{i} (n_{i}!)^{\alpha_{i}}} \frac{4!}{\prod_{i} \alpha_{i}!}}$$

Volya and Yu. M. Tchuvil'sky, Phys. Rev. C 91, 044319 (2015).
Yu. F. Smirnov and Yu. M. Tchuvil'sky, Phys. Rev. C 15, 84 (1977).
M. Ichimura, A. Arima, E. C. Halbert, and T. Terasawa, Nucl. Phys. A 204, 225 (1973).
O. F. Nemetz, V. G. Neudatchin, A. T. Rudchik, Yu. F. Smirnov, and Yu. M. Tchuvil'sky, Nucleon Clusters in Atomic Nuclei and Multi-Nucleon Transfer Reactions (Naukova Dumka, Kiev, 1988), p. 295.

Center-of-Mass boosts

CM-boosted configuration from shell model perspective

K Kravvaris and A. Volya, Journal of Phys, Conf. Proc. 863, 012016 (2017)

- Recoupling is done with Talmi-Moshinsky brackets
- Diagonalization

Center-of-mass recoil correction

Channel of relative motion

Exact SF

0.0183 8/27=0.296

Cluster Spectroscopic Characteristics

Traditional (old) spectroscopic factor

$$\langle \phi_{n\ell} | \varphi_{\ell} \rangle = \langle \hat{\mathcal{A}} \{ \phi_{n\ell m}(\boldsymbol{\rho}) \, \Psi_{\alpha}' \, \Psi_{D}' \} | \Psi_{P}' \rangle =$$

 $\begin{array}{c} \langle \phi_{n\ell} | \varphi_{\ell} \rangle = \mathcal{R}_{n\ell} \sum_{\eta} X_{n\ell}^{\eta} \mathcal{F}_{n\ell}^{\eta} \\ & \swarrow & \swarrow & \swarrow \\ \text{Recoil Factor} & \text{Cluster Coefficient Fractional Parentage Coefficient} \end{array}$

Normalized (new) spectroscopic factor

$$\psi_{\ell}(\rho) \equiv \hat{\mathcal{N}}_{\ell}^{-1/2} \varphi_{\ell}(\rho)$$

$$S_{\ell}^{(\text{new})} \equiv \langle \psi_{\ell} | \psi_{\ell} \rangle = \int \rho^2 d\rho \left| \psi_{\ell}(\rho) \right|^2$$

Sum of all new SF from all parent states to a given final state equals to the number of channels

R. Id Betan and W. Nazarewicz Phys. Rev. C 86, 034338 (2012)

S. G. Kadmenskya, S. D. Kurgalina, and Yu. M. Tchuvil'sky Phys. Part. Nucl., 38, 699–742 (2007).

R. Lovas et al. Phys. Rep. 294, No. 5 (1998) 265 – 362.

T. Fliessbach and H. J. Mang, Nucl. Phys. A 263, 75-85 (1976).

H. Feschbach et al. Ann. Phys. 41 (1967) 230 – 286

Channels, spectroscopic factors examples

parent	channel	N_c	$ \langle \Psi \Phi_C \rangle $	$\langle \Phi_C \Phi_C angle$
$^{16}O[0]$	$^{12}C[(0,4)] + \alpha[0]$	4	$\sqrt{8/27}$	8/27
$^{16}O[0]$	$^{12}C[p_{3/2}^8] + \alpha[0]$	4	0.135	0.018
$^{16}O[0]$	$^{12}C[p_{3/2}^8] + \alpha[4]$	4	0.130	0.017
$^{8}\text{Be}[(4,0)]$	$\alpha[0] + \alpha[0]$	4	$\sqrt{3/2}$	3/2
8 Be[0]	$\alpha[0] + \alpha[0]$	4	1.160	3/2
8 Be[4]	$\alpha[0] + \alpha[0]$	4	0.984	3/2
8 Be[4]	$\alpha[0] + \alpha[0]$	6	0.644	15/8
8 Be[4]	$\alpha[2] + \alpha[2]$	4	0.981	1.492
$1^{12}C[p_{3/2}^8]$	$\alpha[0] + \alpha[0] + \alpha[0]$	8	1/4	81/80
16O[0]	$(lpha[0])^4$	12	$\sqrt{3/10}$	3/10

I=0 spectroscopic amplitudes of base

Structure of the alpha particle in NCSM

A. M. Shirokov, J. P. Vary, A. I. Mazur, and T. A. Weber. Realistic nuclear hamiltonian: Ab exitu approach. Physics Letters B, 644(1):33, 2007.

Experiment:

[1] T.A. Carey, P.G. Roos, N.S. Chant, A. Nadsen, H.L. Chen, Phys. Rev. C 23,576(R) (1981)
[2] N. Anantaraman et al. Phys. Rev. Lett. 35, 1131 (1975)

Our results tabulated: https://www.volya.net/ (see research, clustering)

Clustering in ²⁰Ne

Clustering in ²⁰Ne

Clustering in ²⁰Ne

Resonating group method

 $\mathcal{H}_{nn'}^{(\ell)} = \langle \Phi_{n\ell} | H | \Phi_{n'\ell} \rangle \quad \mathcal{N}_{nn'}^{(\ell)} = \langle \Phi_{n\ell} | \Phi_{n'\ell} \rangle$

Spectroscopic factors we discuss:

 $\Phi_{n\ell}$ Basis channel state (HO relative motion)

 $\hat{\mathcal{N}}^{-1/2} \, \Phi_{n\ell}$ Orthonormalized basis channels

$$\mathcal{F}_\ell(
ho) = \sum_n \chi_n \Phi_{n\ell}$$
 RGM solution channels

Resonating group method ⁸Be

 $\mathcal{H}_{nn'}^{(\ell)} = \langle \Phi_{n\ell} | H | \Phi_{n'\ell} \rangle \qquad \mathcal{N}_{nn'}^{(\ell)} = \langle \Phi_{n\ell} | \Phi_{n'\ell} \rangle$

SU(3) limit verification: Y Suzuki, K.T Hecht Nuclear Physics A455 (1986) 315

Resonating group method ⁸Be results

K Kravvaris and A. Volya, Phys.Rev.Lett, 119(6), 062501 (2017)

-48.1

-52.1

 2^{+}

 0^+

lpha	$+^{6}$	He
α	$+^{\circ}$	He

SF comparison for Nmax = 4 calculation in ¹⁰Be, 4 quanta in relative motion, hw=25,

	0^+	2^+	4^+
$\mathcal{S}^{(old)}$	0.498	0.404	0.148
$ ~ \mathcal{S}^{(new)}$	0.605	0.561	0.303
$\left ~~ \mathcal{S}^{(dyn)} ight $	0.672	0.633	0.407

$$\begin{array}{rl} 2^{+} & -64.7\\ \hline 0^{+} & -68.2\\ N_{max} = 4 & N_{max} = 4 \end{array}$$

4+

-56.4

Ttriple-alpha RGM

parent	channel	overlap
${}^{12}C[4](0_1^+)$	$\alpha[0] + \alpha[0] + \alpha[0]$	0.841
${}^{12}C[4](0_2^+)$	$\alpha[0] + \alpha[0] + \alpha[0]$	0.229

N_{max}(rel)=12

Coupling with continuum

Asymptotic solution with phase shift

J-matrix (or HORSE) method: J. M. Bang, Annals of Physics 280, 299 (2000) Experimental data: Phys. Rev. 168, 1114 (1968); Nucl. Phys. A287, 317 (1977)

n+alpha scattering phase shifts

J-matrix (or HORSE) method: J. M. Bang, Annals of Physics 280, 299 (2000) Experimental data: Phys. Rev. 168, 1114 (1968); Nucl. Phys. A287, 317 (1977)

Acknowledgements:

K. Kravvaris.

Yu. Tchuvil'sky, T Dytrych, A. Shirokov, J. Vary, G. V. Rogachev, V. Z. Goldberg.

Funding: U.S. DOE contract DE-SC0009883.

Publications:

K Kravvaris and A. Volya, Phys.Rev.Lett, 119(6), 062501 (2017); Journal of Phys 863, 012016 (2017)

K Kravvaris Doctoral dissertation, Florida State University (2018)

D. K. Nauruzbayev, V. Z. Goldberg, A. K. Nurmukhanbetova, M. S. Golovkov, A. Volya, G. V. Rogachev, and R. E. Tribble, Phys. Rev. C **96**, 014322 (2017)

A. Volya and Y. M. Tchuvil'sky, Phys.Rev.C 91, 044319 (2015); J. Phys. Conf. Ser. 569, 012054 (2014); (World Scientific, 2014), p. 215.

M. L. Avila, G. V. Rogachev, V. Z. Goldberg, E. D. Johnson, K. W. Kemper, Y. M. Tchuvil'sky, and A. Volya, Phys. Rev. C 90, 024327 (2014).

A. M. Long, T. Adachi, M. Beard, G. P. A. Berg, Z. Buthelezi, J. Carter, M. Couder, R. J. deBoer, R. W. Fearick, S. V. Förtsch, J. Görres, J. P. Mira, S. H. T. Murray, R. Neveling, P. Papka, F. D. Smit, E. Sideras-Haddad, J. A. Swartz, R. Talwar, I. T. Usman, M. Wiescher, J. J. Van Zyl, and A. Volya Phys. Rev. C 95, 055803

Resources: https://www.volya.net/ (see research, clustering)