

Benchmarking the Active Catcher Array to Study Multi Nucleon Transfer Reactions

Aditya Wakhle
27th October 2018

Cyclotron Institute, Texas A&M University

Heavy elements

Heavy elements – Heavy-ion Fusion

- All heavy elements to date have been synthesized by fusion.
- Quasi-fission and fusion-fission are competing channels.
- Limitation was target material -> move to radioactive targets
- Current limitation is beam -> transitioning to radioactive beams, current intensities are 10^5 pps. Need intensities above 10^{10} pps.

Heavy elements – Heavy-ion Fusion

- All heavy elements to date have been synthesized by fusion.
- Quasi-fission and fusion-fission are competing channels.
- Limitation was target material -> move to radioactive targets
- Current limitation is beam -> transitioning to radioactive beams, current intensities are 10^5 pps. Need intensities above 10^{10} pps.

Heavy Elements - Multi-nucleon Transfer?

- Multi-nucleon transfer reactions between pairs of heavy nuclei – actinide+actinide
- Balance between:
 - heavy residues – favour heavier pairs
 - survival probability – favour lighter pairs
- Production of neutron rich, heavy and super-heavy isotopes with relatively higher cross section.
- Theoretical studies predicting fission rates indicate high survival probabilities around the island of stability via both **statistical models, and microscopic models**.

Macroscopic Models, ‘Inverse’ Quasi-fission

Microscopic Models, Multi Nucleon Transfer

MNT reactions in TDHF

Entrance channel $^{238}\text{U} + ^{232}\text{Th}$

Exit channel $^{220}\text{Rn}^* + ^{250}\text{Cm}^*$

Ian Jeanis – in preparation (2018) – See student poster session.

D. J. Kedziora and C. Simenel Phys. Rev. C **81**, 044613 (2010)

‘Passive’ Catcher Technique

‘Passive’ Catcher Technique

‘Passive’ Catcher Technique

J. Natowitz Group - Active Catcher at Texas A&M

J. Natowitz Group - Active Catcher at Texas A&M

40x YAP (YAlO_3)
Scintillators
Coupled to PMTs

J. Natowitz Group - Active Catcher at Texas A&M

Backward angle:

8x IC + Si

40x YAP (YAlO_3)
Scintillators
Coupled to PMTs

Beam->

$^{238}\text{U} + ^{232}\text{Th}$ Measurement with Active Catcher at TAMU

- 7.5 MeV/u ^{238}U beam, ^{232}Th 10 mg/cm² target,
- Forward angle YAP scintillators (coverage from $\sim 7^\circ$ to $\sim 60^\circ$, 22% geometric efficiency), radiation hard; provide pulse shape discrimination->Distinguish implants from subsequent alpha decay. Alpha detection efficiency >50% during beam 'OFF'
- IC-Si telescopes arranged at backward angles to detect decay of implants in Active Catcher. -> **IC-Si do not see the target**

$^{238}\text{U} + ^{232}\text{Th}$ Measurement with Active Catcher at TAMU

- 7.5 MeV/u ^{238}U beam, ^{232}Th 10 mg/cm² target,
- Forward angle YAP scintillators (coverage from $\sim 7^\circ$ to $\sim 60^\circ$, 22% geometric efficiency), radiation hard; provide pulse shape discrimination->Distinguish implants from subsequent alpha decay. Alpha detection efficiency >50% during beam 'OFF'
- IC-Si telescopes arranged at backward angles to detect decay of implants in Active Catcher -> **IC-Si do not see the target**
- Beam pulsing: Build alpha emitters during beam 'ON' & watch for decay of short lived species during beam 'OFF'.

Tested beam on/off combinations of 30/30 ms and 100/30ms.

$^{238}\text{U} + ^{232}\text{Th}$ Measurement with Active Catcher at TAMU

- 7.5 MeV/u ^{238}U beam, ^{232}Th 10 mg/cm² target,
- Forward angle YAP scintillators (coverage from $\sim 7^\circ$ to $\sim 60^\circ$, 22% geometric efficiency), radiation hard; provide pulse shape discrimination->Distinguish implants from subsequent alpha decay. Alpha detection efficiency >50% during beam 'OFF'
- IC-Si telescopes arranged at backward angles to detect decay of implants in Active Catcher -> **IC-Si do not see the target**
- Beam pulsing: Build alpha emitters during beam 'ON' & watch for decay of short lived species during beam 'OFF'.

Tested beam on/off combinations of 30/30 ms and 100/30ms.

Acquisition system: Struck 3316 Digitizers @ 250 MHz -> important for fast decays.

$^{238}\text{U} + ^{232}\text{Th}$ Measurement with Active Catcher at TAMU

- 7.5 MeV/u ^{238}U beam, ^{232}Th 10 mg/cm² target,
- Forward angle YAP scintillators (coverage from $\sim 7^\circ$ to $\sim 60^\circ$, 22% geometric efficiency), radiation hard; provide pulse shape discrimination->Distinguish implants from subsequent alpha decay. Alpha detection efficiency >50% during beam 'OFF'
- IC-Si telescopes arranged at backward angles to detect decay of implants in Active Catcher -> **IC-Si do not see the target**
- Beam pulsing: Build alpha emitters during beam 'ON' & watch for decay of short lived species during beam 'OFF'.

Tested beam on/off combinations of 30/30 ms and 100/30ms.

Acquisition system: Struck 3316 Digitizers @ 250 MHz -> important for fast decays.

Extracted predicted decay time from universal function of KH Schmidt, for alpha particles in 400 keV energy bins.-> **Indicative of decay times of nuclei whose yields are dominant in the sampled energy range.**

Partial half-lives extracted using Viola-Seaborg systematics & fits to known isotopes.

K. H. Schmidt, et al. Z. Phys A **316**, 19 (1984)

$^{238}\text{U} + ^{232}\text{Th}$ – Geiger Nuttall Plot

Can we observe chains?

- Correlation methods analogous to those used in gamma-decay spectroscopy + peak searching software package in ROOT
- Some evidence of daughters in the range of $Z=106-114$.

Can we observe chains?

- Correlation methods analogous to those used in gamma-decay spectroscopy + peak searching software package in ROOT
- Some evidence of daughters in the range of $Z=106-114$.
- Difficult because of:
 - Large number of products from reaction “hostile landscape”.
 - Products in uncharted region
 - New detector system-> needs benchmarking.

Benchmarking the Active Catcher

- $^{22}\text{Ne} + ^{232}\text{Th}$: -> Measurement completed June 2018

Suggested by Walter Loveland;

based on H. Kumpf and E. D. Donets, Soviet Physics Jetp. 17, 3 (1963)

- $^{208}\text{Pb} + ^{\text{nat}}\text{Pb}$ -> Scheduled for 6th November 2018

$^{22}\text{Ne} + ^{232}\text{Th}$ Active Catcher Measurement

- **6.5 MeV/u $^{22}\text{Ne} + ^{232}\text{Th}$ target:** measure the production of ^{227}Th , ^{226}Ac , ^{225}Ac and ^{224}Ac
All decay by either alpha, beta, or K-capture. Half lives from hours to days.
- End in decay of a Polonium isotopes, intermediate products have millisecond to microsecond half-lives

FIG. 3. Device for measurement of the angular distribution of recoil nuclei (in the angular range 180 to 40°).

$^{22}\text{Ne} + ^{232}\text{Th}$ Active Catcher Measurement

- **6.5 MeV/u $^{22}\text{Ne} + ^{232}\text{Th}$ target:** measure the production of ^{227}Th , ^{226}Ac , ^{225}Ac and ^{224}Ac
All decay by either alpha, beta, or K-capture. Half lives from hours to days.
- End in decay of a Polonium isotopes, intermediate products have millisecond to microsecond half-lives
- Reaction products were implanted in the forward angle YAP Active Catcher; alpha counting in a backward angle Si+IC array.
- Offline counting for 21 days post beam.

Radioactive family	$4n+3$	$4n+2$	$4n+1$		$4n$	
Observed parent nucleus	Th^{227}	Ac^{226}				
Periods determining the nucleus decay	18d, 11d	28 h	10d	14d, 10d	3 h	3.6d
Energy of observed α line, MeV	7.35	7.68	8.35	8.35	8.78	8.78
Nucleons emitted from Th^{232}	$5n$	$p5n$	$p6n$	$2p5n$	$p7n$	$2p6n, 4n\alpha$
Q-value estimate, MeV	-6	+3	+2	+15	-3	+18
Cross section σ at 143 MeV, 10^{-28} cm^2	10	6.6	5.5	<1.5	5.3	<2

FIG. 3. Device for measurement of the angular distribution of recoil nuclei (in the angular range 180 to 40°).

$^{22}\text{Ne} + ^{232}\text{Th}$ Active Catcher Measurement

- **6.5 MeV/u $^{22}\text{Ne} + ^{232}\text{Th}$ target:** measure the production of ^{227}Th , ^{226}Ac , ^{225}Ac and ^{224}Ac
All decay by either alpha, beta, or K-capture. Half lives from hours to days.
- End in decay of a Polonium isotopes, intermediate products have millisecond to microsecond half-lives
- Reaction products were implanted in the forward angle YAP Active Catcher; alpha counting in a backward angle Si+IC array.
- Offline counting for 21 days post beam.

Radioactive family	$4n+3$	$4n+2$	$4n+1$	$4n$	
Observed parent nucleus Periods determining the nucleus decay	Th^{227} 18d, 11d	Ac^{226} 28 h	Ac^{225} 10d	Ra^{225} 14d, 10d	Ac^{224} 3 h 3.6d
Energy of observed α line, MeV	7.35	7.68	8.35	8.35	
Nucleons emitted from Th^{232}	$5n$	$p5n$	$p6n$	$2p5n$	
Q-value estimate, MeV	-6	+3	+2	+15	
Cross section σ at 143 MeV, 10^{-28} cm^2	10	6.6	5.5	<1.5	
				5.3	
				<2	

Preliminary Cross sections from AC: >7.6 <8.7 5.5^* 1.8 6.2 2.1

FIG. 3. Device for measurement of the angular distribution of recoil nuclei (in the angular range 180 to 40°).

$^{208}\text{Pb} + ^{\text{nat}}\text{Pb}$ Measurement

- **10Mev/u ^{208}Pb beam + $^{\text{nat}}\text{Pb}$ target (PbS)**
- From Two Centre Shell Model based Adiabatic Potential Energy Surface Calculations (V. Zagrebaev, Y. Aritomo, W. Greiner):

Most extreme Multi-nucleon transfer products with $\Delta Z \sim 10$ and $\Delta A \sim 20$

Higher cross sections for $\Delta Z \sim 4$ and $\Delta A \sim 8$

$^{208}\text{Pb} + ^{\text{nat}}\text{Pb}$ Measurement

- 10MeV/u ^{208}Pb beam + $^{\text{nat}}\text{Pb}$ target (PbS)
- From Two Centre Shell Model based Adiabatic Potential Energy Surface Calculations (V. Zagrebaev, Y. Aritomo, W. Greiner)

Most extreme Multi-nucleon transfer products with $\Delta Z \sim 10$ and $\Delta A \sim 20$

Higher cross sections for $\Delta Z \sim 4$ and $\Delta A \sim 8$

- Decay by alpha emission with alpha energies between 7MeV and 10MeV
- Half-lives ranging from $\sim 1\text{s}$ down to a few 100ns.
- 5 clean alpha chains – distinct alpha Energy and half-life
- Can we Identify alpha chains against known alpha chains in this region of the nuclear chart? Establish parent-daughter relationships?

$^{208}\text{Pb} + ^{\text{nat}}\text{Pb}$ Measurement- Candidate alpha chains

Z	212Rn 23.9 M α : 100.00% 6385	213Rn 19.5 MS α : 100.00% 8243	214Rn 0.27 μS α : 100.00% 9208	215Rn 2.30 μS α : 100.00% 8839	216Rn 45 μS α : 100.00% 8197	217Rn 0.54 MS α : 100.00% 7887	218Rn 35 MS α : 100.00% 7262.5	219Rn 3.96 S α : 100.00% 6946.1	220Rn 55.6 S α : 100.00% 6404.66
85	211At 7.214 H ε : 58.20% α : 41.80% 5982.4	212At 0.314 S α : 100.00% ε : < 0.03% 7817.0	213At 125 NS α : 100.00% 9254	214At 558 NS α : 100.00% 8987	215At 0.10 MS α : 100.00% 8178	216At 0.30 MS α : 100.00% β^- : < 6.0E-3% 7950	217At 32.3 MS α : 99.99% β^- : 7.0E-3% 7201.3	218At 1.5 S α : 99.90% β^- : 0.10% 6874	219At 56 S α : 93.60% β^- : 6.40% 6324
84	210Po 138.376 D α : 100.00% 5407.45	211Po 0.516 S α : 100.00% 7594.5	212Po 0.299 μS α : 100.00% 8954.12	213Po 3.72 μS α : 100.00% 8536	214Po 163.6 μS α : 100.00% 7833.46	215Po 1.781 MS α : 100.00% β^- : 2.3E-4% 7526.3	216Po 0.145 S α : 100.00% 6906.3	217Po 1.53 S α : 99.98% β^- : 0.02% 6114.68	218Po 3.098 M α : 99.98% β^- : 0.02% 6114.68
83	209Bi STABLE 100% 3137.3	210Bi 5.012 D β^- : 100.00% α : 1.3E-4% 5036.5	211Bi 2.14 M α : 99.72% β^- : 0.28% 6750.3	212Bi 60.55 M β^- : 64.06% α : 35.94% 6207.26	213Bi 45.61 M β^- : 97.80% α : 2.20% 5982	214Bi 19.9 M β^- : 99.98% α : 0.02% 5621	215Bi 7.6 M β^- : 100.00% 5.30E+3	216Bi 2.25 M β^- : 100.00% 5.00E+3	217Bi 98.5 S β^- : 100.00% 4.52E+3
82	208Pb STABLE 52.4% 517.2	209Pb 3.234 H β^- : 100.00% 2248	210Pb 22.20 Y β^- : 100.00% α : 1.9E-6% 3792	211Pb 36.1 M β^- : 100.00% 3.57E+3	212Pb 10.64 H β^- : 100.00% 3.29E+3	213Pb 10.2 M β^- : 100.00% 3.02E+3	214Pb 27.06 M β^- : 100.00% 2.76E+3	215Pb 147 S β^- : 100.00% 2.62E+3	216Pb >300 NS β^- : 100.00% 2.3E+3
	126	127	128	129	130	131	132	133	N

$^{208}\text{Pb} + ^{\text{nat}}\text{Pb}$ Measurement- Candidate alpha chains

4p 3,4,5,6n

	212Rn 23.9 M	213Rn 19.5 MS	214Rn 0.27 μS	215Rn 2.30 μS	216Rn 45 μS	217Rn 0.54 MS	218Rn 35 MS	219Rn 3.96 S	220Rn 55.6 S
Z	α : 100.00% 6385	α : 100.00% 8243	α : 100.00% 9208	α : 100.00% 8839	α : 100.00% 8197	α : 100.00% 7887	α : 100.00% 7262.5	α : 100.00% 6946.1	α : 100.00% 6404.66
85	211At 7.214 H ε : 58.20% α : 41.80% 5982.4	212At 0.314 S α : 100.00% ε : < 0.03% 7817.0	213At 125 NS α : 100.00%	214At 558 NS α : 100.00%	215At 0.10 MS α : 100.00%	216At 0.30 MS α : 100.00% β^- : < 6.0E-3% 7950	217At 32.3 MS α : 99.99% β^- : 7.0E-3% 7201.3	218At 1.5 S α : 99.90% β^- : 0.10% 6874	219At 56 S α : 93.60% β^- : 6.40% 6324
84	210Po 138.376 D α : 100.00% 5407.45	211Po 0.516 S α : 100.00%	212Po 0.299 μS α : 100.00%	213Po 3.72 μS α : 100.00%	214Po 163.6 μS α : 100.00%	215Po 1.781 MS α : 100.00% β^- : 2.3E-4% 7526.3	216Po 0.145 S α : 100.00%	217Po 1.53 S α : 99.98% β^- : 0.02% 6114.68	218Po 3.098 M
83	209Bi STABLE 100% 3137.3	210Bi 5.012 D β^- : 100.00% α : 1.3E-4% 5036.5	211Bi 2.14 M α : 99.72% β^- : 0.28% 6750.3	212Bi 60.55 M β^- : 64.06% α : 35.94% 6207.26	213Bi 45.61 M β^- : 97.80% α : 2.20% 5982	214Bi 19.9 M β^- : 99.98% α : 0.02% 5621	215Bi 7.6 M β^- : 100.00% 5.30E+3	216Bi 2.25 M β^- : 100.00% 5.00E+3	217Bi 98.5 S β^- : 100.00% 4.52E+3
82	208Pb STABLE 52.4% 517.2	209Pb 3.234 H β^- : 100.00%	210Pb 22.20 Y β^- : 100.00% α : 1.9E-6% 3792	211Pb 36.1 M β^- : 100.00%	212Pb 10.64 H β^- : 100.00%	213Pb 10.2 M β^- : 100.00%	214Pb 27.06 M β^- : 100.00%	215Pb 147 S β^- : 100.00%	216Pb >300 NS β^- : 100.00% 2.3E+3 28
	126	127	128	129	130	131	132	133	N

$^{208}\text{Pb} + ^{\text{nat}}\text{Pb}$ Measurement- Candidate alpha chains

4p 3,4,5,6n

	212Rn 23.9 M	213Rn 19.5 MS	214Rn 0.27 μS	215Rn 2.30 μS	216Rn 45 μS	217Rn 0.54 MS	218Rn 35 MS	219Rn 3.96 S	220Rn 55.6 S
Z	α : 100.00% 6385	α : 100.00% 8243	α : 100.00% 9208	α : 100.00% 8839	α : 100.00% 8197	α : 100.00% 7887	α : 100.00% 7262.5	α : 100.00% 6946.1	α : 100.00% 6404.66
85	211At 7.214 H ε : 58.20% α : 41.80% 5982.4	212At 0.314 S α : 100.00% ε : < 0.03% 7817.0	213At 125 NS α : 100.00%	214At 558 NS α : 100.00%	215At 0.10 MS α : 100.00%	216At 0.30 MS α : 100.00% β^- : < 6.0E-3% 7950	217At 32.3 MS α : 99.99% β^- : 7.0E-3% 7201.3	218At 1.5 S α : 99.90% β^- : 0.10% 6874	219At 56 S α : 93.60% β^- : 6.40% 6324
84	210Po 138.376 D α : 100.00% 5407.45	211Po 0.516 S α : 100.00% 7594.5	212Po 0.299 μS α : 100.00%	213Po 3.72 μS α : 100.00%	214Po 163.6 μS α : 100.00%	215Po 1.781 MS α : 100.00% β^- : 2.3E-4% 7526.3	216Po 0.145 S α : 100.00%	217Po 1.53 S α : 100.00%	218Po 3.098 M α : 99.98% β^- : 0.02% 6114.68
83	209Bi STABLE 100% 3137.3	210Bi 5.012 D β^- : 100.00% α : 1.3E-4% 5036.5	211Bi 2.14 M α : 99.72% β^- : 0.28% 6750.3	212Bi 60.55 M β^- : 64.06% α : 35.94% 6207.26	213Bi 45.61 M β^- : 97.80% α : 2.20% 5982	214Bi 19.9 M β^- : 99.98% α : 0.02% 5621	215Bi 7.6 M β^- : 100.00% 5.30E+3	216Bi 2.25 M β^- : 100.00% 5.00E+3	217Bi 98.5 S β^- : 100.00%
82	208Pb STABLE 52.4% 517.2	209Pb 3.234 H β^- : 100.00% 2248	210Pb 22.20 Y β^- : 100.00% α : 1.9E-6% 3792	211Pb 36.1 M β^- : 100.00% 3.57E+3	212Pb 10.64 H β^- : 100.00% 3.29E+3	213Pb 10.2 M β^- : 100.00% 3.02E+3	214Pb 27.06 M β^- : 100.00% 2.76E+3	215Pb 147 S β^- : 100.00% 2.62E+3	216Pb >300 NS β^- : 100.00% 2.3E+3
	126	127	128	129	130	131	132	133	N

$^{208}\text{Pb} + ^{\text{nat}}\text{Pb}$ Measurement- Candidate alpha chains

4p 3,4,5,6n

	212Rn 23.9 M	213Rn 19.5 MS	214Rn 0.27 μS	215Rn 2.30 μS	216Rn 45 μS	217Rn 0.54 MS	218Rn 35 MS	219Rn 3.96 S	220Rn 55.6 S
Z	$\alpha: 100.00\%$ 6385	$\alpha: 100.00\%$ 8243	$\alpha: 100.00\%$ 9208	$\alpha: 100.00\%$ 8839	$\alpha: 100.00\%$ 8197	$\alpha: 100.00\%$ 7887	$\alpha: 100.00\%$ 7262.5	$\alpha: 100.00\%$ 6946.1	$\alpha: 100.00\%$ 6404.66
85	$\alpha: 100.00\%$ 7.214 H $\varepsilon: 58.20\%$ $\alpha: 41.80\%$ 5982.4	$\alpha: 100.00\%$ 0.314 S $\varepsilon: < 0.03\%$ 7817.0	$\alpha: 100.00\%$ 125 NS 9254	$\alpha: 100.00\%$ 124At 558 NS	$\alpha: 100.00\%$ 215At 0.10 MS	$\alpha: 100.00\%$ 216At 0.30 MS $\beta: > 3.0E-3\%$ 7950	$\alpha: 100.00\%$ 217At 32.3 MS $\beta: > 3.0E-3\%$ 7201.3	$\alpha: 99.90\%$ 218At 1.5 S $\beta: 0.10\%$ 6874	$\alpha: 93.60\%$ 219At 56 S $\beta: 6.40\%$ 6324
84	$\alpha: 100.00\%$ 138.376 D 5407.45	$\alpha: 100.00\%$ 0.516 S 7594.5	$\alpha: 100.00\%$ 0.299 MS 8954.12	$\alpha: 100.00\%$ 213Po 3.72 S 8536	$\alpha: 100.00\%$ 214Po 163.6 MS 7833.46	$\alpha: 100.00\%$ 215Po 1.781 MS 7526.3	$\alpha: 100.00\%$ 216Po 0.145 S	$\alpha: 100.00\%$ 217Po 1.53 S	$\alpha: 99.98\%$ 218Po 3.098 M 6114.68
83	STABLE 100% 3137.3	$\beta: 100.00\%$ 5.012 D $\alpha: 1.3E-4\%$ 5036.5	$\alpha: 99.72\%$ $\beta: 0.28\%$ 6750.3	$\beta: 64.06\%$ $\alpha: 35.94\%$ 6207.26	$\beta: 97.80\%$ $\alpha: 2.20\%$ 5982	$\beta: 99.98\%$ $\alpha: 0.02\%$ 5621	$\beta: 100.00\%$ 7.6 M	$\beta: \leq 100.00\%$ 2.25 M	$\beta: 100.00\%$ 98.5 S
82	STABLE 52.4% 517.2	$\beta: 100.00\%$ 3.234 H 2248	$\beta: 100.00\%$ $\alpha: 1.9E-6\%$ 3792	$\beta: 100.00\%$ 22.20 Y	$\beta: 100.00\%$ 3.57E+3	$\beta: 100.00\%$ 10.64 H	$\beta: 100.00\%$ 3.02E+3	$\beta: 100.00\%$ 27.06 M	$\beta: 100.00\%$ 147 S
	126	127	128	129	130	131	132	133	N

$^{208}\text{Pb} + ^{\text{nat}}\text{Pb}$ Measurement- Candidate alpha chains

4p 3,4,5,6n

	212Rn 23.9 M	213Rn 19.5 MS	214Rn 0.27 μS	215Rn 2.30 μS	216Rn 45 μS	217Rn 0.54 MS	218Rn 35 MS	219Rn 3.96 S	220Rn 55.6 S	
Z	$\alpha: 100.00\%$ 6385	$\alpha: 100.00\%$ 8243	$\alpha: 100.00\%$ 9208	$\alpha: 100.00\%$ 8839	$\alpha: 100.00\%$ 8197	$\alpha: 100.00\%$ 7887	$\alpha: 100.00\%$ 7262.5	$\alpha: 100.00\%$ 6946.1	$\alpha: 100.00\%$ 6404.66	
85	$\alpha: 100.00\%$ 7.214 H $\varepsilon: 58.20\%$ $\alpha: 41.80\%$ 5982.4	$\alpha: 100.00\%$ 0.314 S $\varepsilon: < 0.03\%$ 7817.0	$\alpha: 100.00\%$ 125 NS 9254	$\alpha: 100.00\%$ 558 NS 8987	$\alpha: 100.00\%$ 0.10 MS 8178	$\alpha: 100.00\%$ 0.30 MS 8178	$\alpha: 100.00\%$ $\beta: < 3.0E-3\%$ 7950	$\alpha: 92.39\%$ $\beta: < 3.0E-3\%$ 7201.3	$\alpha: 99.90\%$ $\beta: 0.10\%$ 6874	$\alpha: 93.60\%$ $\beta: 6.40\%$ 6324
84	$\alpha: 100.00\%$ 138.376 D 5407.45	$\alpha: 100.00\%$ 0.516 S 7594.5	$\alpha: 100.00\%$ 0.299 MS 8354.12	$\alpha: 100.00\%$ 3.72 S 8536	$\alpha: 100.00\%$ 163.6 MS 7833.46	$\alpha: 100.00\%$ 1.781 MS 7526.3	$\alpha: 100.00\%$ $\beta: < 3.0E-4\%$ 7526.3	$\alpha: 100.00\%$ 0.145 S 6906.3	$\alpha: 100.00\%$ 1.53 S 6662.1	$\alpha: 99.98\%$ $\beta: 0.02\%$ 6114.68
83	STABLE 100% 3137.3	$\beta: 100.00\%$ $\alpha: 3.0E-4\%$ 5036.5	$\alpha: 99.72\%$ $\beta: 0.28\%$ 6750.3	$\beta: 6.06\%$ $\alpha: 5.94\%$ 6207.26	$\beta: 97.80\%$ $\alpha: 2.20\%$ 5982	$\beta: 99.98\%$ $\alpha: 0.02\%$ 5621	$\beta: 100.00\%$ 7.6 M 5.30E+3	$\beta: \leq 100.00\%$ 2.25 M 5.00E+3	$\beta: 100.00\%$ 2.25 M 5.00E+3	$\beta: 98.5\%$ 98.5 S 4.52E+3
82	STABLE 52% 517.2	$\beta: 100.00\%$ 3.234 H 2248	$\beta: 100.00\%$ $\alpha: 1.9E-6\%$ 3792	$\beta: 100.00\%$ 22.20 Y 3.57E+3	$\beta: 100.00\%$ 36.1 M 3.29E+3	$\beta: 100.00\%$ 10.64 H 3.02E+3	$\beta: 100.00\%$ 10.2 M 2.76E+3	$\beta: 100.00\%$ 27.06 M 2.62E+3	$\beta: 100.00\%$ 147 S 2.3E+3	$\beta: 100.00\%$ >300 NS 31
	126	127	128	129	130	131	132	133	N	

$^{208}\text{Pb} + ^{\text{nat}}\text{Pb}$

- **10Mev/u ^{208}Pb beam + $^{\text{nat}}\text{Pb}$ target (PbS)**
- Most extreme Multi-nucleon transfer products with $\Delta Z \sim 10$ and $\Delta A \sim 20$ have low cross-section.
- Decay by alpha emission with alpha energies between 7MeV and 10MeV
- half-lives ranging from $\sim 1\text{s}$ down to a few 100ns.
- Can we Identify alpha chains against known alpha chains in this region of the nuclear chart?
- Establish parent-daughter relationships?
- ‘Cleaner’ region alpha active products, compared to reactions with U, Th targets

Side note on Pb targets – Thanks to John Greene

- Currently have PbS targets of thickness 2mg/cm^2 . Ideally 5mg/cm^2
- Limitation is melting point of Pb (328°C) vs. PbS (1114°C)
- PbS is difficult to work with in thick configurations. Amorphous; thick foils crack during evaporation.

- Preliminary measurement on 15th of July 2018, with ^{197}Au beam and PbS targets.

Test run with ^{197}Au beam on $^{\text{nat}}\text{Pb}$ target

Test run with ^{197}Au beam on $^{\text{nat}}\text{Pb}$ target

Test run with ^{197}Au beam on $^{\text{nat}}\text{Pb}$ target

Summary

- Multinucleon transfer reaction products implanted in forward angle scintillators
- Additionally used IC-Si to observe alpha decays of
- Using lifetime and energies and comparing to model calculations, signatures of $Z < 120$ are observed in $^{238}\text{U} + ^{232}\text{Th}$ measurement.
- Alpha Decay Chains difficult to observe because of large number of products and detector resolution.
- Current efforts focused on benchmarking AC, and identifying decay chains in known region of Segre chart.
- $^{208}\text{Pb} + ^{\text{nat}}\text{Pb} \rightarrow$ Scheduled for 6th November 2018
- Ongoing program to incorporate diamond and SiC detectors \rightarrow improved granularity and resolution compared to scintillators, radiation hard.

Research team

- Initial R&D, ^{238}U + ^{232}Th measurement & publication by J. B Natowitz's group: S. Wuenschel, **J. B. Natowitz, M. Barbui, J. Gauthier, K. Hagel, X. G. Cao, R. Wada, E. J. Kim, Z. Majka, Z. Sosin, A. Weiloch, S. Kowalski, K. Schmidt, K. Zelga, C. Ma, G. Zhang**
- Current work by S. J Yennello's group : A. Wakhle, A. B. McIntosh, K. Hagel, J. Gauthier, A. R. Manso, A. Jedelev, A. Zarella, M. Youngs, I. Jeanis, B. M. Harvey, E. Salas, P. Hopkins, and S. J. Yennello.
- Ongoing discussions with J. B. Natowitz and W. Loveland.
- PbS targets from J. Greene at Argonne National Laboratory.

Extra Slides

Detector Performance

hPSD32_R185

hPSD32_ThSource

PSD8

Cf source

hSiEnergyTotal_gated

FADC Chan 11

13-Sep-2017 15:10:29

Alpha particle Energy spectra

Fitting

- Fit decay curves in order to learn about lifetimes
- There can be a span of times over orders of magnitude (ns to s) leading to numeric problems in fitting.
- Introduce $\theta = \log(t)$ and transform equation. (Z. Phys. A **316**, 19 (1984))
- Peaks of $dN/d\theta$ give mean time directly

Lifetime Fitting

Cross sections

- Average cross sections derived assuming that entire energy range from incident energy to Coulomb barrier is contributing.
- More than one isotope in general contributes to energy windows.
- Decrease in cross section with increasing alpha energy is consistent with increase of alpha energy with increasing Z.
- Qualitatively consistent with trends predicted by multi-nucleon transfer models.

Why not observed before?

- Experiments ^{238}U with ^{238}U in the late 1970s
 - In beam detection and radiochemical studies
 - Time delay inherent in radiochemical and gas jet techniques
- Rotating wheel collection experiment
 - Only spontaneous fission activities were searched for
 - Implantation depths of products
- Freiseleben et al. (Z. Phys. A 292,171 (1979))
 - In beam experiment
 - Thin target, so reaction energy was a very narrow window near 7.42 MeV/u
 - A few high energy signals were observed, but discounted because of inadequate discrimination against pile up events.
 - Present experiment measures from 7.5 MeV/u to around 6 MeV/u because of thicker target
 - Present experiment employed Flash ADCs which allowed for about 16ns time resolution reducing the possibility of pileup.
 - Recording of individual detector signal traces allowed inspection of individual detector signals

Detector performance

Next:

- Gate out elastics w. time diff.
- Alpha energy selection,
- Angular distributions,
- Look for 2+ alphas from one decayer.
- Look for long lived products in offline spectra

Preliminary “Decay Curves” from offline counting

h212PoHist_3hr

Preliminary “Decay Curves” from offline counting

h211PoHist_3hr

