Benchmarking the Active Catcher Array to Study Multi Nucleon Transfer Reactions

Aditya Wakhle 27th October 2018

Cyclotron Institute, Texas A&M University

Heavy elements

We are still far from the island of stabilty

Heavy elements – Heavy-ion Fusion

We are still far from the island of stabilty

- All heavy elements to date have been synthesized by fusion.
- Quasi-fission and fusion-fission are competing channels.
- Limitation was target material -> move to radioactive targets
- Current limitation is beam -> transitioning to radioactive beams, current intensities are 10^5 pps. Need intensities above 10^10 pps.

Heavy elements – Heavy-ion Fusion

We are still far from the island of stabilty

- All heavy elements to date have been synthesized by fusion.
- Quasi-fission and fusion-fission are competing channels.
- Limitation was target material -> move to radioactive targets
- Current limitation is beam -> transitioning to radioactive beams, current intensities are 10^5 pps. Need intensities above 10^10 pps.

V.I. Zagrebaev and W. Greiner, Phys. Rev. C 87, 034608 (2013)

Heavy Elements - Multi-nucleon Transfer?

- Multi-nucleon transfer reactions between pairs of heavy nuclei – actinide+actinide
- Balance between: heavy residues – favour heavier pairs survival probability – favour lighter pairs
- Production of neutron rich, heavy and super-heavy isotopes with relatively higher cross section.
- Theoretical studies predicting fission rates indicate high survival probabilities around the island of stability via both statistical models, and microscopic models.

Macroscopic Models, 'Inverse' Quasi-fission

V.I. Zagrebaev and W. Greiner, Phys. Rev. C 87, 034608 (2013)

Microscopic Models, Multi Nucleon Transfer

MNT reactions in TDHF Entrance channel ²³⁸U + ²³²Th Exit channel ²²⁰Rn* + ²⁵⁰Cm*

Ian Jeanis – in preparation (2018) – See student poster session. D. J. Kedziora and C. Simenel Phys. Rev. C **81**, 044613 (2010)

'Passive' Catcher Technique

'Passive' Catcher Technique

'Passive' Catcher Technique

J. Natowitz Group - Active Catcher at Texas A&M

J. Natowitz Group - Active Catcher at Texas 40x YAP (YAIO₃) Scintillators Coupled to PMTs

J. Natowitz Group - Active Catcher at Texas 40x YAP (YAIO₃) A&M **Scintillators** Backward angle:

8x IC + Si

Coupled to PMTs

• 7.5 MeV/u ²³⁸U beam, ²³²Th 10 mg/cm2 target,

• Forward angle YAP scintillators (coverage from ~7° to ~60°, 22% geometric efficiency), radiation hard; provide pulse shape discrimination->Distinguish implants from subsequent alpha decay. Alpha detection efficiency >50% during beam 'OFF'

 IC-Si telescopes arranged at backward angles to detect decay of implants in Active Catcher. -> IC-Si do not see the target

• 7.5 MeV/u ²³⁸U beam, ²³²Th 10 mg/cm2 target,

• Forward angle YAP scintillators (coverage from ~7° to ~60°, 22% geometric efficiency), radiation hard; provide pulse shape discrimination->Distinguish implants from subsequent alpha decay. Alpha detection efficiency >50% during beam 'OFF'

 IC-Si telescopes arranged at backward angles to detect decay of implants in Active Catcher -> IC-Si do not see the target

• Beam pulsing: Build alpha emitters during beam 'ON' & watch for decay of short lived species during beam 'OFF'.

Tested beam on/off combinations of 30/30 ms and 100/30ms.

• 7.5 MeV/u ²³⁸U beam, ²³²Th 10 mg/cm2 target,

• Forward angle YAP scintillators (coverage from ~7° to ~60°, 22% geometric efficiency), radiation hard; provide pulse shape discrimination->Distinguish implants from subsequent alpha decay. Alpha detection efficiency >50% during beam 'OFF'

 IC-Si telescopes arranged at backward angles to detect decay of implants in Active Catcher -> IC-Si do not see the target

• Beam pulsing: Build alpha emitters during beam 'ON' & watch for decay of short lived species during beam 'OFF'.

Tested beam on/off combinations of 30/30 ms and 100/30ms.

Acquisition system: Struck 3316 Digitizers @ 250 MHz -> important for fast decays.

K. H. Schmidt, et al. Z. Phys A **316**, 19 (1984)

• 7.5 MeV/u ²³⁸U beam, ²³²Th 10 mg/cm2 target,

• Forward angle YAP scintillators (coverage from ~7° to ~60°, 22% geometric efficiency), radiation hard; provide pulse shape discrimination->Distinguish implants from subsequent alpha decay. Alpha detection efficiency >50% during beam 'OFF'

 IC-Si telescopes arranged at backward angles to detect decay of implants in Active Catcher -> IC-Si do not see the target

• Beam pulsing: Build alpha emitters during beam 'ON' & watch for decay of short lived species during beam 'OFF'.

Tested beam on/off combinations of 30/30 ms and 100/30ms.

Acquisition system: Struck 3316 Digitizers @ 250 MHz -> important for fast decays.

Extracted predicted decay time from universal function of KH Schmidt, for alpha particles in 400 keV energy bins.-> Indicative of decay times of nuclei whose yields are dominant in the sampled energy range.

Partial half-lives extracted using Viola-Seaborg systematics & fits to known isotopes.

K. H. Schmidt, et al. Z. Phys A 316, 19 (1984)

²³⁸U+²³²Th – Geiger Nuttall Plot Nº 59 09 4 09 10² ഹത്ര --- Agbemava et al. 0 BNL 10 0 **BNL NRV** ۸ Experiment PRC 92, 054310 (2015) 10⁻¹ 10⁻² $t_{\frac{1}{2}}$ (sec) 10⁻³ • 10^{-4} 10⁻⁵ ൟ 10^{-6} 10^{-7} O 8 0 10^{-8} 6 8 9 12 13 14 15 16 17 10 $\dot{\mathsf{E}}_{\alpha}$ (MeV)

Can we observe chains?

- Correlation methods analogous to those used in gamma-decay spectroscopy + peak searching software package in ROOT
- Some evidence of daughters in the range of Z=106-114.

Can we observe chains?

40

20

- Correlation methods analogous to those used in gamma-decay spectroscopy + peak searching software package in ROOT
- Some evidence of daughters in the range of Z=106-114.
- Difficult because of:
- Large number of products from reaction "hostile landscape".
- Products in uncharted region
- New detector system-> needs benchmarking.

11

12

Benchmarking the Active Catcher

²²Ne + ²³²Th: -> Measurement completed June 2018
 Suggested by Walter Loveland;
 based on H. Kumpf and E. D. Donets, Soviet Physics Jetp. 17, 3 (1963)

• ²⁰⁸Pb + ^{nat}Pb -> Scheduled for 6th November 2018

²²Ne+²³²Th Active Catcher Measurement

- **6.5 MeV/u**²²Ne + ²³²Th target: measure the production of ²²⁷Th, ²²⁶Ac, ²²⁵Ac and ²²⁴Ac All decay by either alpha, beta, or K-capture. Half lives from hours to days.
- End in decay of a Polonium isotopes, intermediate products have millisecond to microsecond half-lives

FIG. 3. Device for measurement of the angular distribution of recoil nuclei (in the angular range 180 to 40°).

²²Ne+²³²Th Active Catcher Measurement

- 6.5 MeV/u²²Ne + ²³²Th target: measure the production of ²²⁷Th, ²²⁶Ac, ²²⁵Ac and ²²⁴Ac
 All decay by either alpha, beta, or K-capture. Half lives from hours to days.
- End in decay of a Polonium isotopes, intermediate products have millisecond to microsecond half-lives
- Reaction products were implanted in the forward angle YAP Active Catcher; alpha counting in a backward angle Si+IC array.
- Offline counting for 21 days post beam.

Radioactive family	4n+3 4n+2			4 <i>n</i> +1	4n		
 Observed parent nucleus Periods determining the nucleus decay Energy of observed α line, MeV Nucleons emitted from Th²³² Q-value estimate, MeV Cross section σ at 143 MeV, 10⁻²⁸ cm² 	$ Th^{227} \\ 18d, 11d \\ 7,35 \\ 5n \\ -6 \\ 10 $	Ac ²²⁶ 28 h 7.68 p5n +3 6.6	$ \begin{array}{ c c } Ac^{225} \\ 10d \\ 8.35 \\ p6n \\ +2 \\ 5.5 \end{array} $	$Ra^{225} \\ 14d, 10d \\ 8.35 \\ 2p5n \\ +15 \\ <1.5$	Ac ²²⁴ 3 h 3.6d 8.78 p7n -3 5.3	$Ra^{224} \\ 3.6d \\ 8.78 \\ 2p6n, 4na \\ +18 \\ < 2$	

FIG. 3. Device for measurement of the angular distribution of recoil nuclei (in the angular range 180 to 40°).

²²Ne+²³²Th Active Catcher Measurement

- **6.5 MeV/u**²²Ne + ²³²Th target: measure the production of ²²⁷Th, ²²⁶Ac, ²²⁵Ac and ²²⁴Ac All decay by either alpha, beta, or K-capture. Half lives from hours to days.
- End in decay of a Polonium isotopes, intermediate products have millisecond to microsecond half-lives
- Reaction products were implanted in the forward angle YAP Active Catcher; alpha ٠ counting in a backward angle Si+IC array.
- Offline counting for 21 days post beam. ٠

						-	
	Radioactive family	4n+3	4n+2	4 <i>n</i> +1		4n	
	 Observed parent nucleus Periods determining the nucleus decay Energy of observed α line, MeV Nucleons emitted from Th²³² Q-value estimate, MeV Cross section σ at 143 MeV, 10⁻²⁸ cm² 	$ Th^{227} \\ 18d, 11d \\ 7.35 \\ 5n \\ -6 \\ 10 $	Ac ²²⁶ 28 h 7.68 p5n +3 6.6	Ac ²²⁵ 10d 8.35 p6n +2 5.5	Ra^{225} 14d, 10d 8.35 2 $p5n$ +15 <1.5	Ac ²²⁴ 3 h 3.6d 8.78 p7n -3 5.3	$Ra^{224} \\ 3.6d \\ 8.78 \\ 2p6n, 4na \\ +18 \\ < 2$
Preli	minary Cross sections from AC:	>7.6	<8.7	5.5*	[•] 1.8	6.2	2.1
Mo base Th ²³² target Cyclotron center Ac Collector (Al foil)	FIG. 3. Device for meas- urement of the angular dis- tribution of recoil nuclei (in the angular range 180 to 40°).						
Ne ²² Collector support							24

²⁰⁸Pb+^{nat}Pb Measurement

- 10Mev/u ²⁰⁸Pb beam + ^{nat}Pb target (PbS)
- From Two Centre Shell Model based Adiabatic Potential Energy Surface Calculations (V. Zagrebaev, Y. Aritomo, W. Greiner):

Most extreme Multi-nucleon transfer products with ΔZ^{20} and ΔA^{20}

Higher cross sections for $\Delta Z^{\sim}4$ and $\Delta A ~^{\sim}8$

²⁰⁸Pb+^{nat}Pb Measurement

- 10Mev/u ²⁰⁸Pb beam + ^{nat}Pb target (PbS)
- From Two Centre Shell Model based Adiabatic Potential Energy Surface Calculations (V. Zagrebaev, Y. Aritomo, W. Greiner)

Most extreme Multi-nucleon transfer products with ΔZ^{20} and ΔA^{20}

Higher cross sections for ΔZ^{4} and ΔA^{8}

- Decay by alpha emission with alpha energies between 7MeV and 10MeV
- Half-lives ranging from ~1s down to a few 100ns.
- 5 clean alpha chains distinct alpha Energy and half-life
- Can we Identify alpha chains against known alpha chains in this region of the nuclear chart? Establish parent-daughter relationships?

	212Rn 23.9 M	213Rn 19.5 MS	214Rn 0.27 μS	215Rn 2.30 μS	216Rn 45 μS	217Rn 0.54 MS	218Rn 35 MS	219Rn 3.96 S	220Rn 55.6 S
z	α: 100.00%	α: 100.00%	α: 100.00%	α: 100.00%	α: 100.00%	α: 100.00%	α: 100.00%	α: 100.00%	α: 100.00%
	6385	8243	9208	8839	8197	7887	7262.5	6946.1	6404.66
	211At 7.214 H	212At 0.314 S	213At 125 NS	214At 558 NS	215At 0.10 MS	216At 0.30 MS	217At 32.3 MS	218At 1.5 S	219At 56 S
85	ε: 58.20%	α: 100.00%	α: 100.00 %	α: 100.00 %	α: 100.00 %	α: 100.00%	α: 99.99%	α: 99.90%	α: 93.60 %
	5982.4	7817.0	9254	8987	8178	7950	7201.3	6874	6324
	210Po 138 376 D	211Po	212Po	213Po 3.72 uS	214Po	215Po 1.781 MS	216Po 0.145 S	217Po	218Po 3.098 M
	100.07012	0.010.0	0.200 μ0	0.72 µ0	100.0 µ0	1.701 140	0.110.0	1.00 0	0.000 PT
84	α: 100.00%	α: 100.00 %	α: 100.00%	α: 100.00%	α: 100.00%	β-: 2.3E-4%	α: 100.00%	α	β-: 0.02%
	5407.45	7594.5	8954.12	8536	7833.46	7526.3	6906.3	6662.1	6114.68
	2000	2100	01175	0.1015	0100	014Di	0150	21676	0.1775
	STABLE	5.012 D	2.14 M	60.55 M	45.61 M	19.9 M	7.6 M	2.25 M	98.5 S
83	100%	β-: 100.00 %	α: 99.72%	β-: 64.06%	β-: 97.80%	β-: 99.98%	β-: 100.00 %	β-≤ 100.00%	β-: 100.00 %
00	3137.3	α: 1.3E-4% 5036.5	β-: 0.28% 6750.3	α: 35.94% 6207.26	α: 2.20% 5982	α: 0.02% 5621	5.30E+3	5.00E+3	4.52E+3
	208Pb	209Pb	210Pb	211Pb	212Pb	213Pb	214Pb	215Pb	216Pb
	STABLE 52.4%	3.234 H	22.20 ¥	36.1 M	10.64 H	10.2 M	27.06 M	147 S	>300 NS
82		β-: 100.00 %	β-: 100.00 % α: 1.9E-6%	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %
	517.2	2248	3792	3.57E+3	3.29E+3	3.02E+3	2.76E+3	2.62E+3	2.3E+3
									27
	126	127	128	129	130	131	132	133	N

	212Rn 23.9 M	213Rn 19.5 MS	214Rn 0.27 μS	215Rn 2.30 μS	216Rn 45 μS	217Rn 0.54 MS	218Rn 35 MS	219Rn 3.96 S	220Rn 55.6 S
z	α: 100.00%	α: 100.00%	α: 100.00%	α: 100.00%	7 30.00%	α: 100.00%	α: 100.00 %	α: 100.00%	α: 100.00%
ſ	6385	8243	9208	8839	8197	7887	7262.5	6946.1	6404.66
	211At 7.214 H	212At 0.314 S	213At 125 NS	214At 558 NS	215At 0.10 MS	216At 0.30 MS	217At 32.3 MS	218At 1.5 S	219At 56 S
85	ε: 58.20% α: 41.80% 5982.4	α: 100.00% ≤ < 0.03% 7817.0	α: 100.00% 9254	α: 100.00% 8987	α: 100.00% 8178	α: 100.00% β- < 6.0E-3% 7950	α: 99.99% β-: 7.0E-3% 7201.3	α: 99.90% β-: 0.10% 6874	α: 93.60% β-: 6.40% 6324
	210Po 138.376 D	211Po 0.516 S	212Po 0.299 µS	213Po 3.72 μS	214Po 163.6 μS	215Po 1.781 MS	216Po 0.145 S	217Po 1.53 S	218Po 3.098 M
84	α: 100.00%	α: 100.00%	α: 100.00%	α: 100.00 %	α: 100.00%	α: 100.00%	α: 100.00 %	α	α: 99.98%
	5407.45	7594.5	8954.12	8536	7833.46	յ∺: 2.3 E-4% 7526.3	6906.3	6662.1	р-: 0.02% 6114.68
	209Bi STABLE	210Bi 5.012 D	211Bi 2.14 M	212Bi 60.55 M	213Bi 45.61 M	214Bi 19.9 M	215Bi 7.6 M	216Bi 2.25 M	217Bi 98.5 S
83	100%	β-: 100.00%	α: 99.72%	β-: 64.06%	β-: 97.80%	β-: 99.98%	β-: 100.00%	β- <mark>≤</mark> 100.00%	β-: 100.00 %
	3137.3	α: 1.3 Ε-4% 5036.5	β∹ 0.28% 6750.3	α: 35.94% 6207.26	α: 2.20% 5982	α: 0.02% 5621	5.30E+3	5.00E+3	4.52E+3
	208Pb	209Pb	210Pb	211Pb	212Pb	213Pb	214Pb	215Pb	216Pb
	STABLE 52.4%	3.234 H	22.20 ¥	36.1 M	10.64 H	10.2 M	27.06 M	147 S	>300 NS
82		β-: 100.00 %	β-: 100.00% α: 1.9E-6%	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %
	517.2	2248	3792	3.57E+3	3.29E+3	3.02E+3	2.76E+3	2.62E+3	2.3E+3
									28
	126	127	128	129	130	131	132	133	N

	212Rn 23.9 M	213Rn 19.5 MS	214Rn 0.27 μS	215Rn 2.30 μS	216Rn 45 μS	217Rn 0.54 MS	218Rn 35 MS	219Rn 3.96 S	220Rn 55.6 S
z	α: 100.00%	α: 100.00%	α: 100.00%	α: 100.00%	7 20.00%	α: 100.00%	α: 100.00 %	α: 100.00%	α: 100.00%
	6385	8243	9208	8839	8197	7887	7262.5	6946.1	6404.66
	211At 7.214 H	212At 0.314 S	213At 125 NS	214At 558 NS	215At 0.10 MS	216At 0.30 MS	217At 32.3 MS	218At 1.5 S	219At 56 S
85	ε: 58.20% α: 41.80% 5982.4	α: 100.00% ε < 0.03% 7817.0	α: 100.00% 9254	α: 100.00% 8987	α: 100.00% 8178	α: 100.00 % β- ≤ 6.0E-3% 7950	α: 99.99% β-: 7.0E-3% 7201.3	α: 99.90% β∹ 0.10% 6874	α: 93.60% β-: 6.40% 6324
	210Po	211Po	212Po	213Po	214Po	215Po	216Po	217Po	218Po
	138.376 D α: 100.00%	0.516 S α: 100.00%	0.299 μS α: 100.00%	3.72 μS α: 100.00%	163.6 μS α: 100.00%	1.781 MS α: 100.00%	0.145 S α: 100.00%	1.53 S	3.098 M α: 99.98%
	5407.45	7594.5	8954.12	8536	7833.46	β∹ 2.3 E-4% 7526.3	6906.3	6662.1	β-: 0.02% 6114.68
	209Bi STABLE	210Bi 5.012 D	211Bi 2.14 M	212Bi 60.55 M	213Bi 45.61 M	214Bi 19.9 M	215Bi 7.6 M	216Bi 2.25 M	217Bi 98.5 S
83	100%	β-: 100.00% α: 1.3E-4%	α: 99.72% β-: 0.28%	β-: 64.06% α: 35.94%	β-: 97.80% α: 2.20%	β-: 99.98% α: 0.02%	β-: 100.00%	β-≤ 100.00%	β-: 100.00 %
	3137.3	5036.5	6750.3	6207.26	0982	3621	0.30E+3	5.00243	4.526+3
	208Pb STABLE	209Pb 3.234 H	210Pb 22.20 Y	211Pb 36.1 M	212Pb 10.64 H	213Pb 10.2 M	214Pb 27.06 M	215Pb 147 S	216Pb >300 NS
82	52.470	β-: 100.00 %	β-: 100.00%	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %
	517.2	2248	3792	3.57E+3	3.29E+3	3.02E+3	2.76E+3	2.62E+3	2.3E+3
									29
	126	127	128	129	130	131	132	133	N

	212Rn 23.9 M	213Rn 19.5 MS	214Rn 0.27 μS	215Rn 2.30 μS	216Rn 45 μS	217Rn 0.54 MS	218Rn 35 MS	219Rn 3.96 S	220Rn 55.6 S
z	α: 100.00%	α: 100.00%	α: 100.00%	α: 100.00%	P .40.00%	α: 100.00%	α: 100.00%	π: 100.00%	α: 100.00 %
	6385	8243	9208	8838	8197	7887	7262.5	6346.1	6404.66
	211At 7.214 H	212At 0.314 S	213At 125 NS	214At 558 NS	215At 0.10 MS	216At 0.30 M2	217At 32.3 MS	218At 1.5 S	219At 56 S
85	ε: 58.20% α: 41.80% 5982.4	α: 100.00% ε < 0.03% 7817.0	α: 10,00% 3254	α: 100x00% 8987	α: 12,00% 8178	α: 17,00% β-τ,5.0E-3% 7950	α: 97,9% β-γ,0E-3% 7201.3	α: 99.90% β∹ 0.10% 6874	α: 93.60% β-: 6.40% 6324
	210Po 138.376 D	211Po 0.51f S	212Po 0.299 \7	213Po 3.72 5	214Po 163.6 12	215Po 1.781 45	216Po 0.145 S	217Po 1.53 S	218Po 3.098 M
84	α: 100.00%	α: 100.00%	α: 100.00%	α: 100.00%	α: 10,00%	α: 10 β-: 2.3E-4%	α: 100.00%	π	α: 99.98% β-: 0.02%
	5407.45	7594.5	8904.12	8036	/633.46	7026.3	6306.3	6662.1	6114.68
	209Bi STABLE	210Bi 5.012 D	211Bi 2.14 M	212Bi 60.55 M	213Bi 45.61 M	214Bi 19.9 M	215Bi 7.6 M	216Bi 2.25 M	217Bi 98.5 S
83	100%	β-: 100.00% α: 1.3E-4%	α: 99.72% β∹ 0.28%	β-: 64.06% α: 35.94%	β-: 97.80% α: 2.20%	β-: 99.98% α: 0.02%	β-: 100.00 %	β-≤ 100.00%	β-: 100.00 %
	3137.3	5036.5	6750.3	6207.26	5982	5621	5.306+3	5.006+3	4.52E+3
	208Pb STABLE	209Pb 3.234 H	210Pb 22.20 Y	211Pb 36.1 M	212Pb 10.64 H	213Pb 10.2 M	214Pb 27.06 M	215Pb 147 S	216Pb >300 NS
82	52.4%	β-: 100.00 %	β-: 100.00% α: 1.9E-6%	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %
	517.2	2248	3792	3.57E+3	3.29E+3	3.02E+3	2.76E+3	2.62E+3	2.3E+3
	126	127	128	129	130	131	132	133	N

	212Rn 23.9 M	213Rn 19.5 MS	214Rn 0.27 μS	215Rn 2.30 μS	216Rn 45 μS	217Rn 0.54 MS	218Rn 35 MS	219Rn 3.96 S	220Rn 55.6 S
z	α: 100.00%	α: 100.00%	α: 100.00%	π: 100.00%	r 40.00%	π: 100.00 %	α: 180.00%	π: 100.00%	α: 100.00%
	0303	6240	3208	6633	6137	/66/	1262.3	6346.1	0404.00
	211At 7.214 H	212At 0.314 S	213At 125 NS	214At 558 NS	215At 0.10 MS	216At 0.30 MS	217At 32.3 MS	218At 1.5 S	219At 56 S
85	ε: 58.20% α: 41.80% 5982.4	α: 100.00% ε < 0.03% 7817.0	α: 12,00% 3254	α: 100,00% 8987	α: 120,00% 8178	π: 17,00% β- τ. 5.0E-3% 7950	α: 97,9% β-γ,0Ε-3% 7201.3	α: 99.90% β∹ 0.10% 6874	α: 93.60% β-: 6.40% 6324
	210Po 138.376 D	211Po 0.51f S	212Po 0.299 19	213Po 3.72 S	214Po 163.6 12	215Po 1.781 49	216Po 0.145 S	217Po 1.53 S	218Po 3.098 M
84	α: 100.00% 5407.45	α: 190.00% 7594.5	α: 100.00% 9954.12	α: 100.00% 8536	α: 100.00% /833.46	α: 10,000 π β-: 138-4% /526.3	α: 100.00% 6906.3	π 6662.1	α: 99.98% β-: 0.02% 6114.68
	209Bi STABLE	210Bi 5.012 D	211Bi 2.14 M	212Bi 60.55 M	213Bi 45.61 M	214Bi 19.9 M	215Bi 7.6 M	216Bi 2.25 M	217Bi 98.5 S
83	3137.3	β-: 101.00% α: 3E-4%	α: 97.72% β. 3.28% 6750.3	β-: 61.06% σ. 55.94%	β-: 97 ±0% σ	β-: 99.98% α: 0.02% 5621	β∹ 100.00% 5 30E+3	β-≤ 100.00% 5.00E+3	β-: 100.00% 4 52E+3
	208Pb STAB F	209Pb 3.234 J	210Pb 22.20 Y	211Pb 36.1 M	212Pb 10.64 H	213Pb 10.2 M	214Pb 27.06 M	215Pb 147 S	216Pb >300 NS
82	52.	β-: 10,	β-: 1000% π: 1.9E-6%	β-: 10	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %	β-: 100.00 %
	517.2	2248	3792	3.57E+3	3.29E+3	3.02E+3	2.76E+3	2.62E+3	2.3E+3
	126	127	128	129	130	131	132	133	N

²⁰⁸Pb+^{nat}Pb

- 10Mev/u ²⁰⁸Pb beam + ^{nat}Pb target (PbS)
- Most extreme Multi-nucleon transfer products with ΔZ^{20} and ΔA^{20} have low cross-section.
- Decay by alpha emission with alpha energies between 7MeV and 10MeV
- half-lives ranging from ~1s down to a few 100ns.
- Can we Identify alpha chains against known alpha chains in this region of the nuclear chart?
- Establish parent-daughter relationships?
- 'Cleaner' region alpha active products, compared to reactions with U, Th targets

Side note on Pb targets – Thanks to John Greene

- Currently have PbS targets of thickness 2mg/cm^2. Ideally 5mg/cm^2
- Limitation is melting point of Pb (328°C) vs. PbS (1114°C)
- PbS is difficult to work with in thick configurations. Amorphous; thick foils crack during evaporation.
- Preliminary measurement on 15th of July 2018, with ¹⁹⁷Au beam and PbS targets.

Test run with ¹⁹⁷Au beam on ^{nat}Pb target

Test run with ¹⁹⁷Au beam on ^{nat}Pb target

Test run with ¹⁹⁷Au beam on ^{nat}Pb target

Summary

- Multinucleon transfer reaction products implanted in forward angle scintillators
- Additionally used IC-Si to observe alpha decays of
- Using lifetime and energies and comparing to model calculations, signatures of Z<120 are observed in 238U + 232th measurement.
- Alpha Decay Chains difficult to observe because of large number of products and detector resolution.
- Current efforts focused on benchmarking AC, and identifying decay chains in known region of Segre chart.
- ²⁰⁸Pb + ^{nat}Pb -> Scheduled for 6th November 2018
- Ongoing program to incorporate diamond and SiC detectors -> improved granularity and resolution compared to scintillators, radiation hard.

Research team

- Initial R&D, ²³⁸U+ ²³²Th measurement & publication by J. B Natowitz's group: S. Wuenschel, J. B. Natowitz, M. Barbui, J. Gauthier, K. Hagel, X. G. Cao, R. Wada, E. J. Kim, Z. Majka, Z. Sosin, A. Weiloch, S. Kowalski, K. Schmidt, K. Zelga, C. Ma, G. Zhang
- Current work by S. J Yennello's group : A. Wakhle, A. B. McIntosh, K. Hagel, J. Gauthier, A. R. Manso, A. Jedele, A. Zarella, M. Youngs, I. Jeanis, B. M. Harvey, E. Salas, P. Hopkins, and S. J. Yennello.
- Ongoing discussions with J. B. Natowitz and W. Loveland.
- PbS targets from J. Greene at Argonne National Laboratory.

Extra Slides

Detector Performance

Fitting

- Fit decay curves in order to learn about lifetimes
- There can be a span of times over orders of magnitude (ns to s) leading to numeric problems in fitting.
- Introduce $\theta = \log(t)$ and transform equation. (Z. Phys. A **316**, 19 (1984))
- Peaks of dN/dθ give mean time directly

Lifetime Fitting

Cross sections

- Average cross sections derived assuming that entire energy range from incident energy to Coulomb barrier is contributing.
- More than one isotope in general contributes to energy windows.
- Decrease in cross section with increasing alpha energy is consistent with increase of alpha energy with increasing Z.
- Qualitatively consistent with trends predicted by multi-nucleon transfer models.

Why not observed before?

- Experiments ²³⁸U with²³⁸U in the late 1970s
 - In beam detection and radiochemical studies
 - Time delay inherent in radiochemical and gas jet techniques
- Rotating wheel collection experiment
 - Only spontaneous fission activities were searched for
 - Implanation depths of products
- Freiseleben et al. (Z. Phys. A 292,171 (1979))
 - In beam experiment
 - Thin target, so reaction energy was a very narrow window near 7.42 MeV/u
 - A few high energy signals were observed, but discounted because of inadequate discrimination against pile up events.
 - Present experiment measures from 7.5 MeV/u to around 6 MeV/u because of thicker target
 - Present experiment employed Flash ADCs which ²/₉ ²⁰⁰ allowed for about 16ns time resolution reducing the possibility of pileup.
 - Recording of individual detector signal traces allowed inspection of individual detector signals

Detector performance

Next:

- Gate out elastics w. time diff.
- Alpha energy selection,
- Angular distributions,
- Look for 2+ alphas from one decayer.
- Look for long lived products in offline spectra

Preliminary "Decay Curves" from offline counting

h212PoHist_3hr

Preliminary "Decay Curves" from offline counting

h211PoHist_3hr

