Fragment Isospin as a Probe of Heavy-Ion Collisions

- Symmetry term of EOS
- Equilibration
- “Fractionation” – inhomogeneous distribution of isospin
- Source composition
- Energy spectra
- Dynamics: preequilibrium emission / PLF composition
- Statistical breakup: composition of fragments
- Recent work at TAMU and IU
 - Peripheral / mid peripheral events: PLF and MR
Isospin Equilibration

Johnston, 1995

B.A. Li, 1996

Rami, 2000

\[R_z = \frac{2(Z_{\text{det}} - Z_{\text{Ru}}^Z) - Z_{\text{Zr}}^Z - Z_{\text{Ru}}^Z}{Z_{\text{det}}^Z - Z_{\text{Ru}}^Z} \]
Isotopic composition of fragments as a signature of parent system

FIG. 1. Ratios of energy-integrated isotope yields, measured at $\theta_{\text{lab}} = 40^\circ$, as functions of the N/Z ratio of the combined system of projectile and target. Closed and open symbols denote 12C and 18O projectiles, respectively; circles, squares, triangles, and lozenges stand for 58Ni, 64Ni, natAg, and 197Au targets, respectively. The dashed lines are meant to guide the eye.

FIG. 2. Ratios of triton to proton yields (top) and triton to deuteron yields (bottom), measured at $\theta_{\text{lab}} = 40^\circ$, and plotted as functions of the N/Z ratios of the combined system (left-hand side) and of a source consisting of equal numbers of nucleons from the projectile and from the target (right-hand side). The symbols are chosen as in Fig. 1, the dashed lines are meant to guide the eye.
30 MeV/nucleon $^{58}\text{Fe}, ^{58}\text{Ni} + ^{58}\text{Fe}, ^{58}\text{Ni}$

Carbon fragments

Ramakrishnan et al, PRC 57, 1803 (1998)
124,136Xe + 112,124Sn
55MeV/nucleon

Dempsey et al, PRC 54, 1710(1996)

58Fe, 58Ni + 58Fe, 58Ni
30 MeV/nucleon

Ramakrishnan et al, PRC 57, 1803 (1998)

$\left< \frac{N}{Z} \right> = \frac{3He + 2(4He) + 4(6He)}{2(3He + 4He + 6He)}$.

Projectile fragmentation (with isotopically reconstructed QP)

- Isospin effects the dynamics
- QP with a diversity in isospin
- Possible route to neutron-rich RNB
 - > G.Souliotis clip
$^{28}\text{Si} + ^{112}\text{Sn}, ^{124}\text{Sn} @ 30,50\text{MeV/nucleon}$

$^{20}\text{F}, ^{20}\text{Ne}, ^{20}\text{Na} + \text{Au} @ 32\text{ MeV/nucleon}$
$^20\text{F}, ^{20}\text{Ne}, ^{20}\text{Na} + \text{Au} @ 32 \text{ MeV/nucleon}$

<table>
<thead>
<tr>
<th>Beam</th>
<th>$<N/Z>$ proj</th>
<th>$<N/Z>$ DIT</th>
<th>$<N/Z>$ DIT+evap</th>
<th>$<N/Z>$ exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{20}Na</td>
<td>.818</td>
<td>.926</td>
<td>.876</td>
<td>.912</td>
</tr>
<tr>
<td>^{20}Ne</td>
<td>1</td>
<td>1.06</td>
<td>.953</td>
<td>1</td>
</tr>
<tr>
<td>^{20}F</td>
<td>1.22</td>
<td>1.23</td>
<td>1.02</td>
<td>1.07</td>
</tr>
</tbody>
</table>

D. Rowland
Distillation of a neutron-rich gas?

Projectile fragmentation of $^{20}\text{Na},^{20}\text{Ne},^{20}\text{F}$ at 35 Mev/nucleon
<table>
<thead>
<tr>
<th></th>
<th>30 MeV</th>
<th>50 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$^{28}\text{Si} + ^{112}\text{Sn}$</td>
<td>$^{28}\text{Si} + ^{124}\text{Sn}$</td>
</tr>
<tr>
<td>exp</td>
<td>$4.0 \pm .4$</td>
<td>$4.1 \pm .1$</td>
</tr>
<tr>
<td>DIC + SMM</td>
<td>$3.9 \pm .2$</td>
<td>$4.6 \pm .2$</td>
</tr>
</tbody>
</table>

Both the multiplicity and neutron content of the fragmentation products are dependent on the N/Z of the fragmenting system.

TABLE II. Yields of light charged particles from reconstructed events of 28Si + 112Sn at 50 MeV/nucleon divided by the yields from 28Si + 124Sn. The ratios were normalized for the same number of events for both targets. All LCPs were measured in the range of 1.64°–33.6° in the laboratory.

<table>
<thead>
<tr>
<th>Particle</th>
<th>Overall</th>
<th>QP decay</th>
<th>Direct emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>1.36</td>
<td>1.24</td>
<td>2.58</td>
</tr>
<tr>
<td>2H</td>
<td>1.15</td>
<td>1.11</td>
<td>1.40</td>
</tr>
<tr>
<td>3H</td>
<td>0.96</td>
<td>1.01</td>
<td>0.53</td>
</tr>
<tr>
<td>3He</td>
<td>1.32</td>
<td>1.23</td>
<td>1.74</td>
</tr>
<tr>
<td>4He</td>
<td>1.12</td>
<td>1.10</td>
<td>1.18</td>
</tr>
</tbody>
</table>
Rare Isotope Production with MARS

Silicon Telescope:
ΔE_1, X,Y (Strips)
ΔE_2, Er

MARS Acceptances:
Angular: 9 msr
Momentum: 4 %

Souliotis Clip
Fragments at mid rapidity
larger fragments from midrapidity
(Rapidity Dist. for Z = 2, 3, 4 for different Multiplicity Bins)

\[{}^{124}\text{Xe}, {}^{124}\text{Sn} + {}^{112,124}\text{Sn} \]

\[4\text{He} \quad 7\text{Li} \quad 11\text{B} \]

\[28\text{MeV/A} {}^{209}\text{Bi} + {}^{136}\text{Xe} = 12.4 \text{ fm} \]

Toke, PRL 75, 2920 (1995)

Shetty poster
Rapidity Dist. for 3He, 4He, 6He for different Multiplicity Bins

124Xe, 124Sn + 112,124Sn
3He, 4He, 6He Spectra Comparison

124Xe, 124Sn + 112,124Sn
114,106 Cd + 92,98 Mo at E/A = 50 MeV

LASSA: 9 telescope Si(IP)-Si(IP)-CsI(Tl)/PD array; $7^\circ \leq \theta_{\text{lab}} \leq 58^\circ$

Si-CsI(Tl)/PD; $2.5^\circ \leq \theta_{\text{lab}} \leq 4.5^\circ$

Miniball/Wall; Fast plastic/CsI(Tl); $2^\circ \leq \theta_{\text{lab}} \leq 170^\circ$
Reproducing Ramakrishnan
(neutron deficient isotopes dominate at central angles)
Perpendicular velocity spectra

LASSA, 114Cd+92Mo @ 50 A.MeV
Mid-peripheral, $V_{\parallel} \geq V_{\parallel}^{PLF}$

7Be : $\langle V_\perp \rangle = 2.59565$

10Be : $\langle V_\perp \rangle = 2.16671$
Fractional yield as function of perpendicular velocity
Spectral Comparison for $Z = 3$ Isotopes
(change in slope trend for heaviest isotope?)

$^{124}\text{Xe}, \; ^{124}\text{Sn} + ^{112,124}\text{Sn}$
isotopic energy spectra (preequilibrium effects)

FIG. 5. Ratio of individual isotopic yields to total element yield for Li, Be, B, C, and N fragments observed at 15° as a function of IMF energy. Lines are the result of an accreting-source calculations [13], as identified in the figure. Nuclides are identified by key at upper right.

FIG. 6. Isotope ratios [fraction of given isotope to total elemental yield, $\sigma(Z,A)/\sigma(Z)$] as a function of IMF kinetic energy for Li, Be, B, and C ejectiles from 124Sn target. Left column is for data at 12°; right column for data at 154°.

Energy Spectra As a Probe Of Symmetry Potential

B.A. Li, PRL 78, 1544 (1997)

The ratio of pre-equilibrium neutrons to protons as a function of nucleon kinetic energy for central (upper panel) and peripheral (lower panel) collisions calculated with the Coulomb and symmetry potentials.
Isotope ratios as function of centrality

114Cd + 98Mo; 50MeV/nuc

124,136Xe + 112,124Sn 55MeV/nucleon

Dempsey et al, PRC 54, 1710(1996)
Enhanced neutron richness in central versus peripheral collisions

In the spirit of the Gordon Conf...

$^{20}\text{F}, ^{20}\text{Ne}, ^{20}\text{Na} + \text{Au}$

32 MeV/nucleon

![Graphs and diagrams](image-url)
Summary

• Fragment Isospin can tell us about
 – Equilibration
 – Source composition – distribution of isospin

• DIT mechanism can be used to create systems with a diversity of isospin

• Isotopic energy spectra are important to understanding the sources of these fragments
The following people were responsible for bringing you the unpublished data shown in this presentation...*

- DOE, NSF, Welch Foundation

*However they should not be held accountable for the actual presentation.