Study of very Heavy Nuclei at GANIL-SPIRAL2 facilities

Super Heavy Nuclei International Symposium
Texas A & M University, College Station TX, USA
March 31 - April 02, 2015

Christelle Stodel (GANIL)
Study of very Heavy Nuclei at GANIL-SPIRAL2 facilities

- **SPIRAL 2 Facility**
 - LINAG
 - NFS
 - Physics cases
 - Technical description
 - Targets issues

- **GANIL**
 - decay spectroscopy of 257Db
 - AGATA campaign

- Conclusions and Perspectives
Study of very Heavy Nuclei at GANIL-SPIRAL2 facilities

• SPIRAL 2 Facility
 ✓ LINAG
 ✓ NFS
 ✓
 Physics cases
 Technical description
 Targets issues

• GANIL
 ✓ decay spectroscopy of 257Db
 ✓ AGATA campaign

• Conclusions and Perspectives
mid term roadmap

Phase1 (2015-)
Increase the intensity of stable beams
High intense neutron source
\(HI \leq 10^{15} \text{ pps, p-Ni}\)

Phase1++ (2021-)
High Intensity
\(HI \leq 10^{15} \text{ pps, p-U}\)

Phase2
Expand the range and the intensity of exotic nuclei

DESIR Phase1+ (2019-)
Low energy facility

AGATA (2015-2018)
New light RIBs from beam/target fragmentation

SPIRAL1 Upgrade (2016-)
A National & EU priority

GANIL (HI \leq 10^{13} \text{ pps})
Production up to \(10^{14} \text{ FF/s}\)

LINAG
33 MeV p, 40 MeV d (5mA)
A/q=3 - 14.5 A.MeV HI (1mA)

SPIRAL1 upgrade
CME: 1-20 A.MeV (9 A.MeV pour FF)

LISE RIBs
High Intensity Project (SPIRAL2 Phase 1++)

- Reference project $\leq 10^{15}$ pps, p-Ni, 0.75 MeV/n – 14.5 MeV/n
- Phase 1++ $\leq 10^{15}$ pps, p-U, 0.75 MeV/n – 10 MeV/n

- Strengthen the phase 1+ scientific program
- Open new perspectives (Pb, U heavy beams)

<table>
<thead>
<tr>
<th>Ions</th>
<th>Intensity (pµA)) [A/Q=3]</th>
<th>High Intensity [A/Q=6]</th>
</tr>
</thead>
<tbody>
<tr>
<td>18O</td>
<td>216</td>
<td>375</td>
</tr>
<tr>
<td>19F</td>
<td>28.6</td>
<td>50</td>
</tr>
<tr>
<td>36Ar</td>
<td>17.5</td>
<td>40</td>
</tr>
<tr>
<td>40Ar</td>
<td>2.9</td>
<td>30</td>
</tr>
<tr>
<td>36S</td>
<td>4.6</td>
<td>30</td>
</tr>
<tr>
<td>40Ca</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>48Ca</td>
<td>1.25</td>
<td>15</td>
</tr>
<tr>
<td>58Ni</td>
<td>1.1</td>
<td>10</td>
</tr>
<tr>
<td>84Kr</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>124Sn</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>139Xe</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>238U</td>
<td>0</td>
<td>2.5</td>
</tr>
</tbody>
</table>
SPIRAL2 Phase 1++ civil construction is finished

September 2014
Installation

LINAC beams in 2015
SPIRAL2 - LINAG

December 19th-22nd 2015: 7.7mA H⁺ on CF11

90% of equipments installed
Objectif ambitieux de démarrer la source protons et LBE2 avant Noël 2014

http://pro.ganil-spiral2.eu/events/weeks/ganil-spiral2-week-2014
Neutrons For Science

Physics cases (19 LOIs):
- Neutron induced reactions studies (n, xlcp) (n,xn)
- Fission studies
- Cross-section reaction measurements by activation technique
- Biology
- Detector development

- Beam at 0°
- Collimator ↔ beam quality
- Size (L x l) ≈ (28m x 6m)
 - TOF measurements
 - free flight path

Use of radioactive samples
A< 1 GBq for thin layers
A< 10 GBq for thick samples

I < 50 µA
P < 2 kW

Most of the detection systems setups already exist

High impact day 1 experiments for first SPIRAL2 beams (PAC October 2015)

R&D for the production of radioisotopes (211At & 64Cu)

By courtesy of X. Ledoux
Super Separator Spectrometer

The project & the physics opportunities

S3 Collaboration (Loi signed by 28 laboratoires)

ANL (US), CENBG, CSNSM, JINR-FLNR, (Russia), GANIL, France, GSI (Germany), INFN Legnaro, (Italy), IPHC, France, IPNL, , Irfu CEA Saclay, IPNO, France, JYFL (Finland), K.U. Leuven (Belgium), Liverpool-U, (UK), LNS (Italy), LPSC, MSU (US), LMU, (Germany), Nanjing-U (China), Northern Illinois University (US), SAS Bratislava, (Slovaquia), IFJ PAN Cracow (Poland), Smoluchowski Institute (Poland), CEA-DAM; SUBATECH, TAMU (US), U. Mainz (Germany), York-U (UK), Vinca Institute (Serbia)

http://pro.ganil-spiral2.eu/spiral2/instrumentation/s3
Physics goals

Study of rare events in nuclear and atomic physics

\[^{58}\text{Ni}+^{46}\text{Ti} \rightarrow ^{100}\text{Sn} +4\text{n} \]
\[(I=10\mu\text{A}) \rightarrow 3\text{evt/s} @ \sigma_{\text{th}}=5\text{nb} \]

Proton Dripline & N=Z nuclei
- Tests of Shell Model
- Shapes of nuclei
- Exotic decay
- Ground-State Properties

Nuclei produced by Fusion-Evaporation

\[^{48}\text{Ca}+^{238}\text{U} \rightarrow ^{283}112 +3,4\text{n} \]
\[(I=10\mu\text{A}) \rightarrow 20\text{evt/week/pb} \]

Neutron-Rich Nuclei
- Single-Particle structure
- Quenching of Shell Gaps

High Resolution and High Transmission versatile separator-spectrometer

Ion-Ion interactions

Atomic physics
FISIC project

→ test nuclear and atomic models and guide new theoretical development
Day 1 experiments: VHE - SHE

© SHE Synthesis
I = 10 pμA
⇒ 1 evt/month @ σ ~ 10 fb

© Reaction studies
Isospin dependent investigation

© Nuclear structure
Quasi-particle excitations ⇒ deformation/K-isomers
Alpha/gamma/electron spectroscopy
X ray spectroscopy
Day 1 experiments: VHE - SHE

<table>
<thead>
<tr>
<th>nuclide</th>
<th>feature</th>
<th>X-section [nb]</th>
<th>rate [h⁻¹]</th>
<th>21UT integral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>day 1</td>
<td>phase 1++</td>
</tr>
<tr>
<td>254No</td>
<td>ER</td>
<td>2000</td>
<td>60.000</td>
<td>1×10⁷</td>
</tr>
<tr>
<td>256Rf</td>
<td>ER</td>
<td>17</td>
<td>550</td>
<td>90.000</td>
</tr>
<tr>
<td>266Hs</td>
<td>ER</td>
<td>15 (²⁷⁰Ds)</td>
<td>0.34</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>K-isomer</td>
<td>15 (²⁷⁰Ds)</td>
<td>0.01</td>
<td>2.5</td>
</tr>
<tr>
<td>270Ds</td>
<td>ER</td>
<td>15</td>
<td>0.45</td>
<td>76</td>
</tr>
<tr>
<td>270mDs</td>
<td>K-isomer</td>
<td>15 (²⁷⁰Ds)</td>
<td>0.22</td>
<td>38</td>
</tr>
<tr>
<td>262Sg</td>
<td>α-decay</td>
<td>15 (²⁷⁰Ds)</td>
<td>0.02</td>
<td>5</td>
</tr>
<tr>
<td>276Cn</td>
<td>ER</td>
<td>0.5 (²⁷⁷Cn)</td>
<td>0.01</td>
<td>2.5</td>
</tr>
<tr>
<td>²⁸⁸115</td>
<td>ER</td>
<td>10</td>
<td>0.3</td>
<td>50</td>
</tr>
<tr>
<td>²⁸⁸115</td>
<td>L X-rays</td>
<td>10</td>
<td>1.8</td>
<td>300</td>
</tr>
</tbody>
</table>

Lol 2009:

“Production and spectroscopy of heavy and superheavy elements using S³ and LINAG”
- Neutron deficient nuclei around Z=92 N=126
- K-isomerism studies in the Z=100-110 region
- Study of neutron rich isotopes produced by asymmetric reactions
- Production of SHE with Z=106-108-112 with Uranium target

Addendum 2012:

“Detailed spectroscopy of high-K states in ²⁵⁴No and ²⁵⁶Rf: location of single--particle states close to the Z=100 and N=152 deformed shell gaps”
(Univ Jyvaskyla, CSNSM, GANIL, IRFU and S3 coll)

“Towards the study of Z=115 via the reaction ⁴⁸Ca + ²⁴³Am”
(JINR, GANIL and S3 coll)

Talk of J. Gates on Tuesday

SIRIUS needed

Z > 112 ➔ Actinide targets
Optics

- Multistep separation
- Large acceptance
- Mass resolution ($\Delta M/M = 460$)

Image 1: Highly selective beam rejection

Image 2: Achromat selection
Extended drift to place detector arrays

Image 3: TKE selection

Image 4: Mass selection

Tracewin simulation code (Irfu):
Full raytracing in the multipole 3D field maps
Automatic optimisation of 80 fields

$\Delta (M/Q) \approx 460$

$A = 101, 100, 99$

$22, 23, 24, 25, 26$
Beam spot: $\sigma_x = 0.5\text{mm}, \sigma_y [0.5-2.5\text{mm}]

Energy precision $\approx 5 \times 10^{-3}$

All hardware components are under final construction

Installation completed by September 2016
Experimental Techniques

Ground state properties
(mass, size, moments, spins)

REGLIS\(^3\) setup
Low Energy Branch
Funded

Atomic physics

FISIC setup
Fast Ion Slow Ion Collisions Electron exchange

Partially Funded
INSPI-CIMAP-JENA/GSI + new CPIER

In-beam spectroscopy
Two step reactions
EXOGAM2
PARIS-AGATA
MUST2/GASPARD
Not in the scope of the project

Delayed spectroscopy
SIRIUS setup
Implantation-decay station at the mass dispersive plan
Funded by new CPIER

Phase 1a
GANIL, IPHC, CSNSM, CEA/Irfu/SPhN

Phase 1b

Phase 2

Phase 3
REGLIS3 day 1 experiments

215Ac ($N=126$)

May 2014 5GHz

Dec 2014 S3-like
Target stations for S^3

- Prototype Actinide target station
 - Design & Conception
 - Target irradiations
- First stable target station
Requirements

Stable

\(^{208}\text{Pb}, ^{209}\text{Bi}, \text{Ni}, \text{Ca}, \text{C}..., 0.3 - 2 \text{ mg/cm}^2 \)
\((R \approx 35 \text{ cm}) \)

Actinides

\(^{232}\text{Th}, ^{238}\text{U}, ^{239}\text{Pu}, ^{242}\text{Pu}, ^{244}\text{Pu}, ^{243}\text{Am}, ^{248}\text{Cm} \)

\(0.3 - 0.5 \text{ mg/cm}^2 \approx 25 \text{ mg} \approx 10^2 - 10^8 \text{ Bq} \)
\((R \approx 7 \text{ cm}) \)

Stripper

C, Al

30-100 \(\mu \text{g/cm}^2 \)

<table>
<thead>
<tr>
<th>beam</th>
<th>(^{70}\text{Zn})</th>
<th>(^{48}\text{Ca})</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(MeV/u)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>target</td>
<td>C/Pb/C</td>
<td>Ti/Cm/C</td>
</tr>
<tr>
<td>thickness ((\mu \text{g/cm}^2))</td>
<td>10/450/10</td>
<td>2(\mu \text{m}/450/10</td>
</tr>
<tr>
<td>w (rpm)</td>
<td>3000</td>
<td>5000</td>
</tr>
<tr>
<td>R(cm)</td>
<td>33.5</td>
<td>7</td>
</tr>
<tr>
<td>(T_{max} < T_{fus})</td>
<td>Pb ou PbS</td>
<td>U ou Cm(_2)O(_3)</td>
</tr>
<tr>
<td>(I_{max} (\mu\text{Ae}))</td>
<td>90-800</td>
<td>100-400</td>
</tr>
<tr>
<td>DT (\pm 50^\circ \text{C})</td>
<td>(Ti)</td>
<td>(Ti)</td>
</tr>
<tr>
<td>(I_{max} (\mu\text{Ae}))</td>
<td>60-80</td>
<td>30-70</td>
</tr>
<tr>
<td>(dP (w))</td>
<td>35-50</td>
<td>15-35 (*3 Ti)</td>
</tr>
</tbody>
</table>

48Ca (10p\mu\text{A}) + ^{248}\text{Cm} \rightarrow ^{296}\text{Zn}^{116*} 70\text{Zn} (10p\mu\text{A}) + ^{208}\text{Pb} \rightarrow ^{278}\text{Zn}^{112*}

oxidation of backings, irradiation modification, sputtering....???
Prototype Actinide Target Station

- Reliability tests
- Instrumentation of the dedicated electronics for target control (e-beam, silicons...)

2009

- Command/control of target wheel
- GANIL beam tests (129Xe @ 8 MeV/A, 250 pnA)

S³ target monitoring with an electron gun

Test at LISE 2000 in 2014

Automated Scanning of the e-Gun using Raspberry Pi and digital Potentiometer

- Online 3D imaging of each target is possible
- We observed some degradation according to the material and the dose

Jinesh Kallunkathariyil et al, Institute of Physics, Jagiellonian University, Krakow
Carbon – 500 µg/cm²

Before irradiation (R5)

10 Multilayer

4.4E16 part (R60)

5 Multilayer

DLC

4 Multilayer

C Targets from W. Mittig, F. Pellemeoine, MSU
Upstream beam line

Collimator with beam current measurement

F. Lutton, P. Gangnant, C. Marry, J.F. Libin, P. Lecomte …
Conclusions - Perspectives - SPIRAL2

- LINAC under test
- First LINAC Beams end 2015-2016
- “Actinide test bench” available

- **1st S3 stable target station:**
 - Manufacture et receipt
 - Integration of instrumentation
 - Mechanical tests
 - Development of the Command/control
 - Pyrometer / thermal camera

- Installation
- Off-beam Tests
- commissioning

- Design + manufacture of **actinide station** + Glove box
- Tests with actinides targets

- R&D target technologies
 - Cacao/GSI/MAINZ/Dubna...
 - backings
 - fabrication methods
 - FISIC strippers
 - Characterization
Study of very Heavy Nuclei at GANIL-SPIRAL2 facilities

- **SPIRAL 2 Facility**
 - LINAG
 - NFS
 - Physics cases
 - Technical description
 - Targets issues

- **GANIL**
 - decay spectroscopy of 257Db
 - AGATA campaign

- Conclusions and Perspectives
Spectroscopy of 257Db

J. Piot, M. Vostinar et al, (GANIL, IPHC, Dpt of Physics, Jyväskylä, GSI, DNPB, Bratislava, CEA, IRFU, LPC, CNSNSM, Dpt of Physics, Liverpool, JINR Dubna)

Measure new electromagnetic transitions in 257Db, 253Lr and 249Md

209Bi(50Ti,2n)257Db σ=2.4 nb

- Isomeric levels in 255Lr [Hauschild et al. PRC, 2008.]
- and 256Rf [Jeppesen et al. PRC, 2009.]
- 257Db, 258Sg?
Synthesis of $^{257}\text{Db} @ \text{GANIL}$, LISE in FULIS MODE

First experiment using ^{50}Ti GANIL - up to 0.5 μA on target
 Separation by LISE velocity filter Rejection : 3×10^{10}
 Transmission : 15% (→ Gain factor 15-20 with S3)

E656, E686 experiments : J. Piot & M. Vostinar (GANIL)
Mobile Decay Spectroscopy Set-up - MoDSS for SHE research
- Si stop+box (DSSD+SSSD) combined with large volume Ge-detectors

configuration
- stop detector: 1 × DSSD (60×60 strips)
- box detectors: 4 × SSSD (32 strips)
- γ efficiency ≈ 40%

chamber
- compact (overall length 35 cm)
- Al-cap with thin γ window (1.5 mm)
- compatible due to 150 mm standard flange

DSSD
- integrated cooling (Cu-frame) and connection (flex-PCB)
- 60×60 strips/mm (pitch 1 mm)
- 300 µm

electronics (partly integrated in the vacuum)
- analog and digital (FEBEX) options

first α spectrum (test run at LISE/GANIL 2014)
(ΔE: 20 keV)

typical α-decay trace (FEBEX)
2010 → 2011
LNL : 5TC

AGATA D.+PRISMA
Total Eff Nominal ~ 2.6%

2012 → 2014
GSI/FRS : 6TC+3 DC

AGATA @ FRS
Total Eff. (β=0.5) ~ 10%

2014 → 2018
GANIL/SPIRAL2 : 15TC

AGATA @G1 (→ π)
Total Eff ~ 8% to 14%

E. Clément, A. Lemasson, et al
Physics cases for the AGATA campaign in GANIL

- 46, 48Ca
- S, Cl, Ar, K
- 46Ti
- 77Y
- 132In
- 80Zr
- 68Ni, Fe, Co, Cu
- 194Pb
- Sm, Pm
- 78Ni
- Zr, Mo
- Ru, Pd
- Xe, Te

SPIRAL1

- 38K
- 63Ge
- 75Sr
- 80Zr
- 100In
- 176Hg
- 194Pb
- Sm, Pm

58Ni, 40Ca → N=Z

- 48Ca, 50Ti → SHE

254No

- 256Rf

Cm, Bk, Cf, Es

- 238U, 208Pb → 235U

- 47 Letters of Intents
- The equivalent of ~2006 UT are proposed → 16048 hours of beam on target (669 days)
- 4 main setups
 - Vamos in magnetic spectrometer
 - Vamos in gas-filled
 - Nwall + Diamant
 - DSSSD (SPIRAL1)
Physics cases for the 1st AGATA run at GANIL: nuclear structure in the vicinity of doubly magic nuclei

- $^{238}U, ^{208}Pb \rightarrow n$-rich

J. Ljungvall et al: 2+, 4+ 6+ lifetime and g-factor in 62,64,66Fe;

C. Domingo-Pardo et al: 4+, 2+ lifetime in 94Ru and 96Pd;

J. J. Valiente Dobon et al: 4+, 2+ lifetime in 106,108Sn;

G. Georgiev et al: 2+ lifetimes and g factor in 204,206,208Hg;

D. Verney et al: lifetime measurement in 83Ge;

A. Navin et al: $i_{13/2}$ single particle state in 133Sn and high spin in 108Zr;

G. Duchêne et al: 80Zn and 82Ge highest spin structures;

A. Lemasson et al: spectroscopy of 39,41,43S;

P. R. John et al: Shape transition in W isotopes: 190W and 192W spectroscopy and fast timing;

S. Leoni et al: Lifetime in n-rich C and O isotopes: test of the three body forces.
In-beam test VAMOS-AGATA

238U beam for the commissioning of the AGATA-VAMOS coupling.
27 November: 17 UT
8 December: 19 UT
NOW DATA TAKING !
Study of very Heavy Nuclei at GANIL-SPIRAL2 facilities

• SPIRAL 2 Facility
 ✓ LINAG
 ✓ NFS
 ✓
 ❖ Physics cases
 ❖ Technical description
 ❖ Targets issues

• GANIL
 ✓ decay spectroscopy of 257Db
 ✓ AGATA campaign

• Conclusions and Perspectives
SPIRAL2/GANIL Road map

2016: Start of the scientific program of SPIRAL2
- 2015: Commissioning and exploitation of SPIRAL2-Phase 1
- Beginning of 2016: First NFS beams
- End 2016-2017: First S^3 beams

2015 - …. GANIL Scientific program
- AGATA Campaigns 2015-2018 - PARIS, NEDA, GASPARD
- LISE & new SPIRAL1 beams (end 2016) – ACTAR-TPC
- FAZIA-INDRA campaigns, …
- France-hadron, industrial applications

2019- … Start of DESIR Scientific program
- Low energy S^3 beams (ANR REGLIS3)
- SPIRAL1 new beams

2015- … study of the new injector $A/Q=1-7$

Next steps:
- Long-range strategy for GANIL/SPIRAL2: Working group GANIL/SP2 2025
- Final report on a long-range strategy for GANIL/SPIRAL2, XIXth COLLOQUE GANIL (12th-16th October, 2015 Anglet (Aquitaine))