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1. Introduction and Motivation
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Why Atomic Spectroscopy of Heavy Elements? 
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Relativistic Effects 
for Atomic Level Scheme of Uranium
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Radial Wave Functions of Relevant Orbits in Pu
Non-relativistic Hartree-Fock calculations  
taken from E. F. Worden , Jean Blaise, and Mark Fred and N. Trautmann and J.-F. Wyart 
The Chemistry of the Actinide and Transactinide Elements, Third Edition (2008)
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Nuclear Ground-State Properties 
by Atomic Physics Techniques



Requirements for 
Optical Spectroscopy at Trans-Einsteinium Elements

6 m 28 m

21.5 s 25.9 s 0.6 s

1.3 h3.1 m55 s

Off-line:  Z  100 (Fm) breeding 
of material in 
high flux isotope reactors

Problem: Experiments at Fm with 
typically 1010 atoms only 

On-line:  Z > 100 Nuclear reactions
targets : Pb,U,Pu,Cm,Cf, Es 
beams : p,d,,HI (Ca)

209Bi
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Problem: at σ ~ µb small 
production rates ~1/s 254Md253Md 255Md

252Fm
25.4 h

254No 255No 256No

255Lr 256Lr 257Lr

253Fm 254Fm 255Fm

253Es

3 d 3.24 h 20.1h

252Es251Es

Ultra-sensitive Laser-Spectroscopic Methods 



2. How Sensitive is Optical 
Spectroscopy? 



How Sensitive is Optical Spectroscopy? 

R.G.Voe et al., PRL 76 (1996) 2049(Toschek, Dehmelt, Neuhauser et al., 1980)

First example: Ba+ stored in an ion trap
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Buffer Gas Trap

Radioactive Ions
from Separator
T1/2 >1 ms

Buffer Gas Cell

He, Ar at  100 mbar

RI
Diffusion
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15% neutral

• Laser Spectroscopy at Neutral Fraction
• Ion Chemistry and Drift Time Measurements at Charged Fraction
• Cooling and Bunching and Transfer to Traps for Mass Measurements



3. Remarks on Laser Induced 
Fluorescence (LIF) Spectroscopy 

in a Buffer Gas Trap



Laser Beam

HI beam

Target

Recoil Distribution

PM

TAC

time

time

Signal

Background

LIF Signal

Laser Induced Fluorescence (LIF) Spectroscopy

G. D. Sprouse et al., 
Laser Spectroscopy of Light Yb Isotopes On-Line in a Cooled Gas Cell. 
Phys. Rev. Lett. 63 (1989) 1463
Sensitivity: Target production rate about 103/s



4. RAdioactive Decay Detected 
Resonance Ionisation Spectroscopy 

(RADRIS)
Optical Spectroscopy at Americium 

Fission Isomers (Z = 96) 



RAdioactive Decay Detected 
Resonance Ionisation Spectroscopy (RADRIS)



0.9ms 1.0ms

Americium Fission Isomers 

Aim:  <r2>, Q20, I, g
with Optical Spectroscopy

240fAm (T1/2= 0.9 ms)
242fAm (T1/2=14 ms)
244fAm (T1/2=1 ms)

Dubna 1962

•conversion electron spectroscopy
•lifetime measurements of 
excited states (charge plunger 

method)
•g-factor measurements
• -ray spectroscopy
•optical spectroscopy



d Beam 6ms on / 6ms off  12 MeV, I=3A 
p Beam 2ms on / 2ms off  24 MeV, I=3A
d Beam 2ms on / 2ms off  14 MeV, I=2A 

242Pu (d,2n) 242fAm T1/2=14ms
242Pu (p,3n) 240fAm T1/2=0.9ms
244Pu (d,2n) 244fAm T1/2=1ms

0 10 20 cm

Accelerator
(95 kV)

Einzel - Lens System

q~20+

5/s
Pu Target

60 kV 50 kV

f - Isomer Beam

=(8±3)b

f Detector

Buffer Gas Cell
40 mbar Ar

Anti-Coincidence
Detector

Monitor Detector

Getter (350 °C)

Laser

H. Backe et al., PRL 80 (1998) 920

Experimental Setup
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5.Ion-Guide-Detected Resonance 
Ionization Spectroscopy (IGRIS) 

Investigation 
of the Atomic Level Scheme 

of Fermium (Z = 100)



t1/2 = 4730 a
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Oak Ridge National Laboratory
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• Waiting for  255Es 255Fm decay

• Chemical Extraction of 255Fm ( t1/2= 20.1 h )
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Optical Parametric Oscillator (OPO) :
~4 cm-1 (120 GHz )

SHG THG

BBO-OPO SHG

Nd-YAG Laser
50 Hz, 550 mJ

532 nm
~200 mJ

355 nm
50 mJ

410 ---- 1000nm
~ 10 mJ

205  ---- 400 nm
~1mJ

Excimer Laser
500 Hz, 60 mJ/Puls
Lambda Physics

EMG104 MSC Dye

351 nm
353 nm

Bandwidth: 0.05 cm-1 (1.5 GHz)

Excimer Laser
100 Hz, 200 mJ/Puls

Lambda Physics
LPX

308 nm

Dye Lasers,  Bandwidth: 0.2 cm-1 (6 GHz)
Main
Trigger

Dye Dye Dye Dye

308 nm
50 mJ

351 nm
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Laser Systems
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M. Sewtz et al., Phys. Rev. Letters 90 (2003) 163002

Excimer
351/353 nm

The First Optical Transition 
ever Observed for Fermium (Z = 100) 
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6. RADRIS with the
Ion Collection and Atom Re-

Evaporation Method 
Status of Laser Spectroscopy 

at Nobelium (Z = 102)



Experimental Setup
208Pb (48Ca,2n) 254No  (t1/2=55 s, a decay)  

3.4 b:    5 Ions/s



The Ion Collection and Atom 
Re-Evaporation Method (ICARE)

Heavy ion beam
(highly charged,
40-90 MeV)

Buffer Gas Cell
Ar at  50-100 mbar

Method take advantage of the
85 % charged fraction

15 % 
neutrals

85 % charged



The Ion Collection and Atom 
Re-Evaporation Method (ICARE)

Heavy ion beam
(highly charged,
40-90 MeV)

Buffer Gas Cell
Ar at  50-100 mbar

Method take advantage of the
85 % charged fraction

15 % 
neutrals

85 % charged



The Ion Collection and Atom 
Re-Evaporation Method (ICARE)

Heavy ion beam
(highly charged,
40-90 MeV)

Buffer Gas Cell
Ar at  50-100 mbar

Method take advantage of the
85 % charged fraction

15 % 
neutrals

85 % charged



Radioactive Decay Detected Resonance 
Ionization with the ICARE Method
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30
1=

107Ag(52Cr, p3n)155Yb (t1/2=1.75 s,  - decay);  
 = 15 mb, d = 0.455 mg/cm2, 4·104 Ions/s
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S
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Predictions for the 1P1 – level
[1,2] (MCDF) S. Fritzsche, Eur. Phys. J. D 33, 
15 (2005)

[3] (IHFSCC) A. Borschevsky et al., Phys. Rev. A 
75, 042514 (2007)

[5] (MCDF)  Y. Liu, R. Hutton, Y. Zou, Phys. Rev. A 
76, 062503 (2007)

[6] (MCDF) P. Indelicato et al., Eur. Phys. J. 
D45, 155 (2007)

[4] (RCC)  V.A. Dzuba et al., Phys. Rev. A 90 
(2014) 012504

[7] (Extrapolation) J.Sugar, J. Chem. Phys. 60 
(1974) 4103

Multi-Configuration Dirac Fock 
(MCDF)
Intermediate Hamiltonian 
Fock-space coupled-cluster 
(IHFSCC)
Relativistic coupled cluster (RCC)



Search for an Atomic Level



7. Conclusions
• Resonance Ionization Spectroscopy (RIS) in gas cells is a 

powerful laser spectroscopic method at samples in the order 
of only 1010 atoms or production rates as low as 1/s.

• 240-244fAm     0.9–14 ms on-line     106 - 107 RADRIS
• 255Fm             20.1 h         off-line     few 1010 IGRIS

Prospects
• 254No                55 s           on-line     106 - 107 RADRIS
• Method has been tested with an on-line laser spectroscopy 

experiment at the chemical homologue 155Yb. An overall 
efficiency of ~ 1% has been measured.

• The experiment at 254No at GSI for an atomic level search is 
well prepared but is difficult and requires a lot of beam time.

• Activities are also underway at KU Leuven (Belgium) within 
the Heavy Element Laser Ionization Project (HELIOS) to  be 
performed at the SPIRAL-2 facility at GANIL (France).
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