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1. Introduction and Motivation



Why Atomic Spectroscopy of Heavy Elements?
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Relativistic Effects
for Atomic Level Scheme of Uranium
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Radial Wave Functions of Relevant Orbits in Pu

Non-relativistic Hartree-Fock calculations
taken from E. F. Worden , Jean Blaise, and Mark Fred and N. Trautmann and J.-F. Wyart
The Chemistry of the Actinide and Transactinide Elements, Third Edition (2008)
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Nuclear Ground-State Properties
by Atomic Physics Techniques

Hyperfine structure interaction

1. Magnetic dipole hfs
4 <H,(0)>
- 1J

2. Electric quadrupole hfs

A = Nuclear magnetic moment

B=eQ, <¢;(0)> = Spectroscopic quadrupole moment Q;
3. Coupling
J+1 =F = Nuclear spin |

|Isotope shift

d <r> AA = change of mean square charge radius



Requirements for
Optical Spectroscopy at Trans-Einsteinium Elements

On-line: Z> 100 Nuclear reactions
targets : Pb,U,Pu,Cm,Cf, Es
beams : p,d,o,HI (Ca)

Problem: at o ~ yb small
production rates ~1/s

No atomic
spectroscopic
data are known

Off-line: Z <100 (Fm) breeding ssar | ag | 32em | 20m
of material in —_—— — AL BLA S RS-
high flux isotope reactors | zp; »1Es| #?Es| *°Es

Problem: Experiments at Fm with
typically 10'% atoms only

[ — Ultra-sensitive Laser-Spectroscopic Methods



2. How Sensitive Is Optical
Spectroscopy?



How Sensitive Is Optical Spectroscopy?

A _
o (w,)= 2 9 2107 om?
27 g,
- dN 1 dP
= Transition rate per atom Pu="gp O (@) =——— -0 (@)

Power of tuneable cw dye lasers P~ 100 mW ... 1 W

dN
= Flux of photons e 107...10" / (s cm?*) = P, ~10° / (s atom)

“In principle” only 1 atom required

First example: Ba* stored in an ion trap

s

1470 nm
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5d203,2
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(Toschek, Dehmelt, Neuhauser et al., 1980) R.G.Voe et al., PRL 76 (1996) 2049



Buffer Gas Trap

Diffusion
>
50 ms
Radioactive lons  Buffer Gas Cell ® 85% charged
from Separator
Ty2>1ms He, Ar at ~ 100 mbar O 15% neutral

» Laser Spectroscopy at Neutral Fraction
 lon Chemistry and Drift Time Measurements at Charged Fraction
» Cooling and Bunching and Transfer to Traps for Mass Measurements



3. Remarks on Laser Induced
Fluorescence (LIF) Spectroscopy
In a Buffer Gas Trap



Laser Induced Fluorescence (LIF) Spectroscopy

Target PM ﬁ time Signal

o C
NN Yg— |
) TAC | = [Il\LIF Signal

HI beam \\
Recoil Distribution N

Laser Beam | | | | | | time

G. D. Sprouse et al.,

Laser Spectroscopy of Light Yb Isotopes On-Line in a Cooled Gas Cell.
Phys. Rev. Lett. 63 (1989) 1463

Sensitivity: Target production rate about 103/s



4. RAdioactive Decay Detected
Resonance lonisation Spectroscopy
(RADRIS)

Optical Spectroscopy at Americium
Fission Isomers (Z = 96)



RAdioactive Decay Detected
Resonance lonisation Spectroscopy (RADRIS)
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Americium Fission Isomers
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Experimental Setup

242py (d,2n) *4’Am T,,=14ms  d Beam 6ms on / 6ms off 12 MeV, 1=3uA c =(8+3)ub
24Py (p,3n) 240'Am T,,=0.9ms p Beam 2ms on / 2ms off 24 MeV, 1=3uA
244Pu (d,2n) 244Am T,,=1ms d Beam 2ms on / 2ms off 14 MeV, I=2uA
Buffer Gas Cell
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H. Backe et al., PRL 80 (1998) 920



|Isotope Shift Measurement in the
Second Potential Minimum
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Quadrupole Moments of Fission Isomers

Axes ratio 1:1.9
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5.lon-Guide-Detected Resonance
lonization Spectroscopy (IGRIS)

Investigation
of the Atomic Level Scheme
of Fermium (Z = 100)



Production of 2°°Fm

High Flux Isotope Reactor
Oak Ridge National Laboratory

 Breeding of %°°Es (Z = 99)
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lon-Guide Detected Resonance lonization
Spectroscopy with Mass Selective lon Detection
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Theoretical Level Predictions for Fermium
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XeF
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The First Optical Transition
ever Observed for Fermium (Z = 100)

M. Sewtz et al., Phys. Rev. Letters 90 (2003) 163002
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Summary of Level Search
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6. RADRIS with the
lon Collection and Atom Re-
Evaporation Method

Status of Laser Spectroscopy
at Nobelium (Z = 102)



Experimental Setup
208pp (48Ca,2n) 254No (t,,=55 s, @ decay)

c~3.4ub: 5lons/s
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The lon Collection and Atom
Re-Evaporation Method (ICARE)

H?avy lon beam Buffer Gas Cell

(highly charged, Ar at ~ 50-100 mbar

40-90 MeV) 15 %
neutrals

( 85/% charged

Method take advantage of the
85 % charged fraction



The lon Collection and Atom
Re-Evaporation Method (ICARE)

H?avy lon beam Buffer Gas Cell
(highly charged, Ar at ~ 50-100 mbar
40-90 MeV) 15 %
0 o neutrals

oo 9, © ®
oo ooo °.o :( 85 % charged

Method take advantage of the
85 % charged fraction



The lon Collection and Atom
Re-Evaporation Method (ICARE)

H?avy lon beam Buffer Gas Cell
(highly charged, Ar at ~ 50-100 mbar
40-90 MeV) o 15 %
© neutrals
‘85 % charged
® &

Method take advantage of the
85 % charged fraction



Radioactive Decay Detected Resonance
lonization with the ICARE Method
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Nobelium as Chemical Homolog of Ytterbium
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Test of the Method at 1>°Yb (Z=70)

107Ag(52Cr, p3n)1%5Yb (t,,=1.75 s, a - decay);

o = 15 mb, pd = 0.455 mg/cm?, 4-10% lons/s

600 -
400 -

200 -

\ ‘ \ ‘ \ ‘ \ ‘ \ ‘ \ ‘ N

Laser on

600 -

Events

400

200 -

Laser off

151
150 Ho

154. 155 154.
y o 156y Tm Yb Yb

152

Er

VVV

Ww%

v

Laser 2
A, =399.6 nm

Laser 1
A =398.9 nm

Signal _30

oc-Energie [MeV]

5.5

Background 1



Efficiency

~
NRIS .
NTi‘Zet =0.8-10
Yb )

= 8SHIP . 8Cell . SIon . 8C011€Ct . SDecay : SEvap ! SRIS . 8Transp.gocDet

ol Y——

05-0.7-085-08-059- 016 -1 -0.36




excitation energy / eV

Predictions for the P, — level
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Search for an Atomic Level
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/. Conclusions

* Resonance lonization Spectroscopy (RIS) in gas cells is a
powerful laser spectroscopic method at samples in the order
of only 101° atoms or production rates as low as 1/s.

o 240-244Am  0.9-14 ms on-line 106 - 107 RADRIS

e 255Fm 20.1 h off-line  few 1010 IGRIS
Prospects
e 254NO 55s on-line 109-10’ RADRIS

* Method has been tested with an on-line laser spectroscopy
experiment at the chemical homologue >>Yb. An overall
efficiency of ~ 1% has been measured.

e The experiment at 2>*No at GSI for an atomic level search is
well prepared but is difficult and requires a lot of beam time.

 Activities are also underway at KU Leuven (Belgium) within
the Heavy Element Laser lonization Project (HELIOS) to be
performed at the SPIRAL-2 facility at GANIL (France).

no atomic nlevels known
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