Paving the way to the island of stability
- superheavy element research at GSI and beyond

Dieter Ackermann
GSI
Helmholtzzentrum für Schwerionenforschung GmbH

College Station, March 31st 2015
SHE investigations – stable and exotic beams

- **outline**

- intro – towards the island of stability
 - model predictions
- nuclear structure features of superheavy nuclei (decay spectroscopy after separation)
 - isotopic/isotonic trends of single particle levels
 → towards the next p/n shell gaps
 - quasi-particle excitations
 → deformation/K-isomers
- SHN studies at GANIL/S3/SPIRAL2
 - first experiments at LISE
 - perspectives
- alternative approaches/RIB
 → reaction studies
 - multi nucleon transfer
 - CN spin distributions

- SHN studies at GANIL/S3/SPIRAL2

- multi nucleon transfer
- CN spin distributions

- deformed shell-stabilised superheavy nuclei

- spherical shell-stabilised superheavy nuclei
SHE and the origin of the “island of stability”

- liquid drop limit and quantum mechanical extension

different Z predictions (120-126)
self-consistent models (relativistic meanfield RMF/
Hartree-Fock-Bogoliubov HFB)

existence only due to quantum mechanics and the strong nuclear interaction

spherical shell-stabilised superheavy nuclei

background:
E_{shell}
microscopic-macroscopic calculation (A. Sobiczewski)

deformed shell-stabilised superheavy nuclei
SHN in Nature (EOS calculations)

Superheavy nuclear clusters in core collapse super novae and the crust of neutron stars

- dense core of core collapse SN and low density outer crust of n-stars
- superheavy nuclei imbedded in neutron superfluid (e^- screening)
 → increased lifetime

→ experimental input on nuclear structure features needed also for n-rich superheavy nuclei

Shell evolution in superheavy Z = 120 isotopes: QVC in relativistic framework - dominant n-states

PC+QVC: Formation of the „shell gap“!

Comparable Spectroscopic strengths

Elena Litvinova
PRC 85, 021303(R) 2012
Shell evolution in superheavy Z = 120 isotopes: QVC in relativistic framework

1. Relativistic Mean Field: spherical minima
2. Small amplitude vibrations: RQRPA
3. Very soft nuclei: large amount of low-lying collective vibrational modes (~100 phonons below 15 MeV)

Vibration corrections to alpha decay energies Q_α [MeV]

- Impact on the shell gaps
- Smearing of the shell effects

Shell stabilization & vibration stabilization/destabilization (?)

E.L., arXiv:1108.3508
Decay spectroscopy
- access to a wide variety of nuclear structure features in SHN

K isomerism, mass measurements
EDF calculations
PES, Q_α, sps

sf/α branching ratios - specific for g.s. and excited states
sf barriers

transition to spherical
fission competition
deformation
single particle states (sps)
transition energies

Nuclides discovered at SHIP
New or improved decay data

Calc.: A. Sobszewiski

Dieter Ackermann
Nuclear Structure of the Heaviest Nuclei:

- Production Rates

<table>
<thead>
<tr>
<th>UNILAC intensities</th>
<th>reaction</th>
<th>σ/nbarn</th>
<th>countrate</th>
<th>countrate</th>
<th>countrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>≈ 1 pμA/10^{12} particles/s</td>
<td>→ SPIRAL2 day 1</td>
<td>→ phase 1++</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction</th>
<th>UNILAC intensity</th>
<th>SPIRAL2 day 1</th>
<th>Phase 1++</th>
</tr>
</thead>
<tbody>
<tr>
<td>208Pb(48Ca,2n)(^{254})No</td>
<td>2000</td>
<td>15000/h</td>
<td>40000/h</td>
</tr>
<tr>
<td>206Pb(48Ca,2n)(^{252})No</td>
<td>430</td>
<td>3300/h</td>
<td>8000/h</td>
</tr>
<tr>
<td>206Pb(48Ca,3n)(^{251})No</td>
<td>25</td>
<td>200/h</td>
<td>500/h</td>
</tr>
<tr>
<td>209Bi(40Ar,2n)(^{247})Md</td>
<td>7</td>
<td>80/h</td>
<td>300/h</td>
</tr>
<tr>
<td>208Pb(54Cr,1n)(^{261})Sg</td>
<td>2</td>
<td>15/h</td>
<td>30/h</td>
</tr>
<tr>
<td>207Pb(64Ni,1n)(^{270})Ds</td>
<td>0.013</td>
<td>1/d</td>
<td>2/d</td>
</tr>
</tbody>
</table>
\[\alpha - \alpha - \text{correlations} \quad ^{209}\text{Bi}(^{50}\text{Ti},n)^{258}\text{Db}, \Delta t(\alpha-\alpha) < 400 \text{ s} \]

- corr. \(^{254}\text{Lr} (\Delta t < 400 \text{ s})
- corr. \(^{254}\text{No} (\Delta t < 400 \text{ s})
- \text{delayed coinc. to } (\text{CE},\gamma) (\Delta t < 40 \text{ ms})

SHIP

spring 2015 under analysis
F.P. Heßberger
- News – 266Hs sf-branch - 262Sg α-branch \rightarrow link to 254No

- 26 decay chains (270Ds: 25, 271Ds: 1)
- new spectroscopic data

SHIP spring 2015 under analysis F.P. Heßberger
270Ds Decay Scheme

270Ds:
- 12 g.s. decays
- 13 isomer decays - 2 γ’s: 175/741 keV (in 2000: 3:3 + 1 γ)

Chain 8:
- E_α 200-300 keV lower

266Hs:
- 16 g.s. decays
- 1 isomer decay with a 332 keV γ-ray

Chain 8:
- $E_\alpha \approx$ 200 keV higher
- $E_\gamma = 332$ keV

262Sg:
- α decay observed for the first time (1 full E, 1 escape)

Calculations:
- HFB: S. Cwiok, et al.
Ds: 12 g.s. decays
13 isomer decays - 2 γ's: 175/241 keV
(in 2000: 3:3 + 1 γ)

Hs: 16 g.s. decays

Sg: α decay observed for the first time
(1 full E, 1 escape)
Energy Density Functional Calculations
- Dario Vretenar, Vaia Prassa et al.
Energy Density Functional Calculations
- Dario Vretenar, Vaia Prassa et al.

S. Ćwiok et al., NATURE, 433 (2005)
HFB + SLy4
16 nuclides with K-isomeric states known for $Z = 96$ to 110

→ tool to map deformation towards spherical SHE
Potential E surface Calculations (rel. HFB)

- Bingnan Lu, Dario Vretenar et al.

Rel. Hartree Bogoliubov PES $E(\beta_{20};\beta_{30})$

- axial symmetry
- $\Delta E = 1$ MeV.
Potential E surface Calculations (rel. HFB)

- g.s. deformation varies slowly from \(Z = 100 \) to 112
- wide octupole range for minimum for Fm and No isotopes
- minimum decreases \(\rightarrow \) K-isomer in \(^{276}\text{Cn} \)?
- \(Z = 112 \): at the edge of the spherical shell stabilized region - “island of stability”?

Rel. Hartree Bogoliubov PES \(E(\beta_{20};\beta_{30}) \)
- axial symmetry
- \(\Delta E = 1 \text{ MeV.} \)
High-K isomers in trans-actinide nuclei close to $N=162$

- Energy Density Functional Calculations, Vaia Prassa et al.

Vaia Prassa et al.
PRC 91, 034324 (2015)

Selfconsistent constraint triaxial HFB calculations based on the DD-PC1 functional (PRC 88, 044324 (2013))

- Proton single particle states elevated to higher excitation energies for $N=162$
 - $^{270}\text{Hs} \rightarrow ^{248}\text{Cm}(^{26}\text{Mg}, 4n)$
 J. Dvorak et al., PRL 97, 242501 (2006)
 - $^{272}\text{Ds} \rightarrow \alpha$- daughter of $^{207}\text{Pb}(^{70}\text{Zn}, 1n)^{276}\text{Cn}$
 $\rightarrow \text{HI-LiNAC}$
 (e.g. GSI cw-Linac, FLNR SHE-factory, SPIRAL2 LINAG, ...)

College Station, March 31st 2015
Day 1 SPIRAL2 Phase 1
- SHE LoI(s)

LoI 2009:
“Production and spectroscopy of heavy and superheavy elements using S^3 and LINAG”
- Neutron deficient nuclei around Z=92 N=126
- K-isomerism studies in the Z=100-110 region
- study of neutron rich isotopes produced by asymmetric reactions
- Production of SHE with Z=106-108-112 with Uranium target

Addendum 2012:
“Detailed spectroscopy of high-K states in 254No and 256Rf: location of single--particle states close to the Z=100 and N=152 deformed shell gaps”

Spokespersons:

PAUL GREENLEES, Department of Physics, University of Jyväskylä
Karl Haushild, CSNSM
Amel Korichi, CSNSM
Christophe Theisen, IfNu/SPhN
Stodel Christelle, GANIL

Other participants:
Ch. Theisen, A.Drouart, B.Sulignano,W.Korten, (IRFU CEA Saclay, France)
K.Hauschild, A.Lopez-Martens, A.Korichi, (CSNSM Orsay, France)
D. Boilley, E. Clément, G.De France, F.Rejmund, H.Savajols, C.Schmitt, C.Stodel (GANIL, France)
J.Uusitalo, P.Jones, C.Scholey, R.Julin, M.Leino (University of Jyväskylä, Finland)
B.Gall, J.Piot, O.Dorvaux, (IPHC Strasbourg, France)
D.Ackermann, (GSI, Germany)
R.-D.Herzberg, (University of Liverpool, U.K.)
Eduard Kozulin, Galina Knyazheva, Dmitry Gorelov (FLNR JINR Dubna, Russia)
R. Janssens, J. A. Nolen, G. Savard (Argonne National Laboratory, Argonne, U.S.A.)
Zhongzhou REN (Nanjing University, China)
Y. Bulent (Ankara University, Turkey)
W. Meczynski, J. Styczen, A. Maj, M. Kmiecik, K. Mazurek (IFJ PAN Krakow, Poland)
N. Redon et O. Stezowski (IPN Lyon, France)
Beam intensities

- SPIRAL2 day 1/phase 1+

<table>
<thead>
<tr>
<th>Ion</th>
<th>I_{max} [μA]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SPIRAL 2 day 1</td>
</tr>
<tr>
<td>12C</td>
<td>30</td>
</tr>
<tr>
<td>18O</td>
<td>30</td>
</tr>
<tr>
<td>19F</td>
<td>30</td>
</tr>
<tr>
<td>24Mg</td>
<td>25</td>
</tr>
<tr>
<td>22Ne</td>
<td>25</td>
</tr>
<tr>
<td>28Si</td>
<td>25</td>
</tr>
<tr>
<td>36Ar</td>
<td>20</td>
</tr>
<tr>
<td>40Ar</td>
<td>5.8</td>
</tr>
<tr>
<td>32S</td>
<td>14.6</td>
</tr>
<tr>
<td>36S</td>
<td>9.2</td>
</tr>
<tr>
<td>40Ca</td>
<td>6</td>
</tr>
<tr>
<td>48Ca</td>
<td>2.5</td>
</tr>
<tr>
<td>50Cr</td>
<td>4</td>
</tr>
<tr>
<td>46Ti</td>
<td>5</td>
</tr>
<tr>
<td>58Ni</td>
<td>2.2</td>
</tr>
</tbody>
</table>

SPIRAL2 day 1:
- injector A/Q=3
- conventional phoenix ECR

SPIRAL2 phase 1++ (not funded so far):
- injector A/Q=6-7
- new ECR supra conducting source
Day 1 experiments at S³ (SPIRAL2/GANIL)

- **rate summary**

<table>
<thead>
<tr>
<th>nuclide</th>
<th>reaction</th>
<th>feature</th>
<th>X-section [pbarn]</th>
<th>rate [Hz]</th>
<th>integral counts(21UT)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>day 1</td>
</tr>
<tr>
<td>²⁵⁴No</td>
<td>⁴⁸Ca+²⁰⁸Pb</td>
<td>K-isomer</td>
<td>2000×10³</td>
<td>60.000</td>
<td>1×10⁷</td>
</tr>
<tr>
<td>²⁵⁶Rf</td>
<td>⁵⁰Ti+²⁰⁸Pb</td>
<td>K-isomer</td>
<td>17×10³</td>
<td>550</td>
<td>90.000</td>
</tr>
<tr>
<td>²⁶⁶Hs</td>
<td>⁶⁴Ni+²⁰⁷Pb</td>
<td>ER</td>
<td>15 (²⁷⁰Ds)</td>
<td>0.34</td>
<td>57</td>
</tr>
<tr>
<td>²⁶⁶mHs</td>
<td>⁶⁴Ni+²⁰⁷Pb</td>
<td>K-isomer</td>
<td>15 (²⁷⁰Ds)</td>
<td>0.01</td>
<td>2.5</td>
</tr>
<tr>
<td>²⁷⁰Ds</td>
<td>⁶⁴Ni+²⁰⁷Pb</td>
<td>ER</td>
<td>15</td>
<td>0.45</td>
<td>76</td>
</tr>
<tr>
<td>²⁷⁰mDs</td>
<td>⁶⁴Ni+²⁰⁷Pb</td>
<td>K-isomer</td>
<td>15 (²⁷⁰Ds)</td>
<td>0.22</td>
<td>38</td>
</tr>
<tr>
<td>²⁶²Sg</td>
<td>⁶⁴Ni+²⁰⁷Pb</td>
<td>α-decay</td>
<td>15 (²⁷⁰Ds)</td>
<td>0.02</td>
<td>5</td>
</tr>
<tr>
<td>²⁷⁶Cn</td>
<td>⁷⁰Zn+²⁰⁷Pb</td>
<td>K-Isomer search</td>
<td>0.5 (²⁷⁷Cn)</td>
<td>0.01</td>
<td>2.5</td>
</tr>
<tr>
<td>²⁸⁸115</td>
<td>⁴⁸Ca+²⁴³Am</td>
<td>ER</td>
<td>10</td>
<td>0.3</td>
<td>50</td>
</tr>
<tr>
<td>²⁸⁸115</td>
<td>⁴⁸Ca+²⁴³Am</td>
<td>L X-rays</td>
<td>10</td>
<td>1.8</td>
<td>300</td>
</tr>
</tbody>
</table>
SHN research at SPIRAL2/GANIL
- decay spectroscopy at S³

- comprehensive focal plane detector setup SIRIUS
 - trackers for ToF and veto
 - Si detector array for charged particle detection
 - ER, α’s, e⁻
 - photon detector array
 - γ’s, X-rays
SHN research at SPIRAL2/GANIL
- decay spectroscopy at S^3

comprehensive focal plane detector setup SIRIUS
- trackers for ToF and veto
- Si detector array for charged particle detection
 - ER, α’s, e^-
- photon detector array
 - γ’s, X-rays
Mobile Decay Spectroscopy Set-up – MoDSS for SHE research

- Si stop+box (DSSD+SSSD) combined with large volume Ge-detectors

First α spectrum (test run at LISE/GANIL)

ΔE: 20 keV

Typical α-decay trace (FEBEX)

Configuration (similar to TASiSpec, L. Andersson et al.)

- **Stop detector**: 1 × DSSD (60×60 strips)
- **Box detectors**: 4 × SSSD (32 strips)
- **γ efficiency**: $\approx 40\%$

Chamber

- **Compact (overall length 35 cm)**
- **Al-cap with thin γ window (1.5 mm)**
- **Compatible due to 150 mm standard flange**

DSSD

- **Integrated cooling (Cu-frame) and connection (flex-PCB)**
- **60×60 strips/mm (pitch 1 mm)**
- **300 μm**

Electronics (partly integrated in the vacuum)

- **Analog and digital (FEBEX) options**
Mobile Decay Spectroscopy Set-up – MoDSS for SHE research
- starting from Sunday, March 29th in operation at GANIL/LISE for 50Ti + 209Bi

compact electronics: FEBEX3A flash ADC’s

compact configuration: MoDSS + EXOGAM clovers

first Th-α’s from 50Ti+170Er:
March 30th 2015 at 4:30 a.m.

the night shift
SHE research at S³/SPIRAL2

- physics and requirements

- nuclear structure features of SHN
 - quasi-particle excitations → deformation/K-isomers
 - X-ray Z-identification (LoI GANIL-FLNR for Z=115)
 - in-beam studies/in-beam X-rays?

- reaction studies
 - isospin dependent investigations

- instrumentation
 - GSI Si-array MoDSS → SIRIUS

- accelerator and targets
 - A/q = 6-7 (SPIRAL2 phase 1+)
 - actinide target technology

Nuclides discovered at SHIP
New or improved detectors

Spokespersons:

PAUL GREENLEES, Department of Physics, University of Jyväskylä
Karl Haushild, CSNSM
Amel Korichi, CSNSM
Christophe Theisen, Irfu/SPhN
Stodel Christelle, GANIL

Other participants:
Ch. Theisen, A.Drouart, B.Sulignano, W.Korten, (IRFU CEA Saclay, France)
K.Hauschild, A.Lopez-Martens, A.Korichi, (CSNSM Orsay, France)
D. Boilley, E. Clément, G. De France, F.Rejmund, H.Savajols, C.Schmitt, C.Stodel (GANIL, France)
J.Uusitalo, P.Jones, C.Scholey, R.Julin, M.Leino (University of Jyväskylä, Finland)
B.Gall, J.Piot, O.Dorvaux, (IPHC Strasbourg, France)
D.Ackermann, (GSI, Germany)
R.-D.Herzberg, (University of Liverpool, U.K.)
Eduard Kozulin, Galina Knyazheva, Dmitry Gorelov (FLNR JINR Dubna, Russia)
R. Janssens, J. A. Nolen, G. Savard (Argonne National Laboratory, Argonne, U.S.A.)
Zhongzhou REN (Nanjing University, China)
Y. Bulent (Ankara University, Turkey)
W. Meczynski, J. Styczyn, A. Maj, M. Kmiecik, K. Mazurek (IFJ PAN Krakow, Poland)
N. Redon et O. Stezowski (IPN Lyon, France)

Dieter Ackermann

See contribution of Christelle Stodel on Thursday
Collaborators

D.A., M. Block, H.G. Burkhard, F.P. Heßberger, S. Heinz, S. Hofmann, J. Khuyagbaatar*, I. Kojouharov, J. Maurer,
GSI Helmholtzzentrum für Schwerionenforschung
Darmstadt, Germany
A.K. Mistry, M. Laatiaoui
Helmholtz Institut Mainz, Germany
J. Piot, H. Savajols, Ch. Stodel,
M. Vostinar
GANIL, Caen, France
A.G. Popeko, A.V. Yeremin
FLNR/JINR Dubna, Russia
B. Andel, S. Antalic, Z. Kalininova
Comenius University, Bratislava, Slovakia
M. Leino, P. Greenlees, J. Uusitalo,
J. Sorri
University of Jyväskylä, Finland
K. Nishio
JAEA Tokai, Japan
D. Vretenar, V. Prassa
University of Zagreb, Croatia
B. Lu
Academy of Science, Beijing, China
E. Litvinova
WMU, Kalamazoo, U.S.A.
V. Singh
Panjab Universtity, India