Careers in Research

Xiaodong Tang University of Notre Dame

B.Sc., Nanjing University, China, 1990-1994

Postdoc, Argonne Nat'l Lab, 2003-2006

M.Sc., China Institute of Atomic Energy, China, 1994-1997

Ph.D., Texas A&M University at College Station, 1997-2002 Postdoc, 2002-2003

Ass. Prof., Physics, ND, 2006-

15 thousand million years

.

1 thousand million years

The big

radiation

particles

quark

e. electron

anti-quark

carrying

heavy particles

the weak force

∘ p ₩⁺⊃

Z

9

9

300 thousand years 3 minutes 10⁻⁵ seconds 10-10 seconds 2. 10-34 seconds (He) e. 10-43 seconds e. 10³² degrees 10²⁷ degrees 10¹⁵ degrees 10¹⁰ degrees 10⁹ degrees 6000 degrees positron (anti-electron) proton neutron 18 degrees meson hydrogen deuterium e helium L lithium

3 degrees K

High Redshift Quasar

The ultimate goal of nuclear astrophysics is to understand how nuclear processes generate the energy of stars over their lifetimes and, in doing so, <u>synthesize heavier elements</u> from the primordial hydrogen and helium in the big bang which led to the expanding universe.

W. Fowler

Supernovae

Novae

Small experiment with complete training

What can you do with nuclear Ph.D.?

Academic Research
Faculty
Teaching, Research and Service

Research Staff
Research and Service
Support outside users (National User Facility)

Both positions require postdoc experiences.

And you have more ...

Ph.D.'s 1980-1994 Present position

2002 NSAC Long Range Plan http://www.sc.doe.gov/henp/np/nsac/docs/LRP_5547_FINAL.pdf

Argonne Tandem Linear Accelerator System

Nuclear Astrophysics with Radioactive Beams at ATLAS

Production of ¹⁶N beam

An experiment last more than 3 years.

Institute for Structure and Nuclear Astrophysics at University of Notre Dame

2007 NSAC LRP Recommendations

- JLAB 12 GeV upgrade
- Construction of the Facility for Rare Isotope Beams (FRIB)
- Construction of a Deep Underground Science and Engineering Laboratory
 RHIC update

National User Facilities

Advantages:

- Professional
- Well maintained
- Well supported (many experts)
- Concentrate in physics
- Meet many different people from different places

Disadvantages:

- Every experiment need approval from PAC
- Everything need to be prioritized and scheduled
- Bureaucracy
- Expensive

Advantages of Cyclotron Institute

- Flexible beam time. (NO PAC)
- Unique research facilities at Cyclotron Institute. (eg. K500 + MARS, Cyclotron upgrade Project)
- Excellent teaching environment. You can be "expert" on many.
- Good support.
- Friendly environment.

