Production of Nuclei on the Proton Dripline

Isaiah Richardson

REU 2019 Student, Texas A&M University, College Station, TX

TEXAS A&M UNIVERSITY

Cyclotron Institute

August 2, 2019
Introduction

- Exotic radioactive beams are of interest in a multitude of fields in physics such as Nuclear Astrophysics.
- In order to study the properties of these beams they must be created in a laboratory.
- These beams have been previously produced at beam energies of >77MeV/u using projectile fragmentation.
40Ca beam at 40 MeV/u because that is the maximum beam energy K500 could make with reasonable beam intensity

Using 100µm Ni, 254µm Al, and 456µm Be targets

Using LISE++ assuming projectile fragmentation reaction

In projectile fragmentation product velocity is \approx the beam velocity, so

$$\frac{B\rho_2}{B\rho_1} \propto \frac{q_1/m_1}{q_2/m_2}$$

Goal is to determine how much 35,36Ca can be made with a 40MeV/u beam and compare to LISE++
Method: MARS

- Beam reacts with target and products are separated by $B\rho = \frac{mv}{q}$
- Faraday cup in coffin reads beam current
- Velocity filter filters products by $\frac{q}{m}$
- ΔE vs. E Si telescope detects energy deposited as a signal which is recorded by DAQ
- Tuned MARS for particular isotopes using LISE++
Method: Calibration

Figure: Peaks are used to calibrate detector. Each peak represents -.4cm, 0, .6cm respectively which is controlled by the slits before the beam hits the detector.

Figure: Our 40Ca beam is assumed to be the largest blob on the $N=Z$ line which is used to make a energy per channel calibration. Gaps in spectrum are used to confirm the energy calibration.
Particle Identification

Figure: Particles Identified for the 40Ca beam on Ni target with MARS tuned for 35Ca. Full spectrum is shown. Particles are identified by the energy loss in the Si telescope using the physical calculator in LISE++.

Figure: Gated spectrum for the energy loss in ΔE detector vs. energy loss in E detector for the Ni target which is used to eliminate background from the Etot vs Y spectrum.
Figure: Particles Identified for the ^{40}Ca beam on Al target with MARS tuned for ^{35}Ca. Spectrum is cut to Mg.

Figure: Particles Identified for the ^{40}Ca beam on Be target with MARS tuned for ^{35}Ca. Spectrum is cut to Mg.
Results

- Plots are shown as $\frac{\text{pps}}{\text{enA}}$ as a way of normalizing results, where pps is particles per second.
- 60 enA of beam on target throughout experiment which gives production rates.

Figure: Yields for $^{40}\text{Ca}+\text{Ni}$ reaction compared to LISE++ predicted rates using the projectile fragmentation reaction mechanism. The particles per second per enA when multiplied by the beam current gives the production rates for $^{35,36}\text{Ca}$.
Results

Figure: Yields for a 60enA 40Ca beam on the Al target compared to the LISE++ predicted rates. The Al target in experiment underperforms in comparison to the LISE++ predicted results.

Figure: Yields for a 60enA 40Ca beam on the Be target compared to the LISE++ predicted rates. The Be target in experiment vastly underperforms in comparison to the LISE++ predicted results.
Found that the Ni target has a higher production rate than what LISE++ predicted.

Need only few counts per hour for experiments.

Ni target produced ~ 82 ^{35}Ca and ~ 1295 ^{36}Ca every hour.

Al and Be targets failed to populate $^{35,36}\text{Ca}$ to what LISE++ predicted.

Al and Be targets made ~ 40 $^{35}\text{Ca}/\sim 933$ ^{36}Ca every hour and ~ 10 $^{35}\text{Ca}/\sim 328$ ^{36}Ca every hour respectively.
We seek to explore other nuclei that can be produced such as $^{39,40}\text{Ti}$.

Production of ^{35}Ca can let us study its β-delayed proton and β-delayed two-proton emission.
References and Acknowledgements

R.H. Burch R.E. Tribble and C.A Gagliardi.

O.B. Tarasov and D. Bazin.

The Stopping and Range of Ions in Solids.

M. Lewitowicz et al.
Beta-Decay of Light Nuclei Close to the Proton Drip-Line: 40Ti and 35Ca.

I would like to thank Dr. Brian Roeder and Dr. Antti Saastamoinen for their mentorship throughout this project, Dr. Mike Youngs for taking the overnight shift to collect data for the Ni target, and the Cyclotron Institute for granting me an opportunity to learn and work with nuclear physics for the summer. This project was funded by the NSF REU Grant (PHY-1659847).