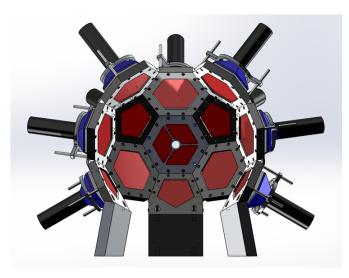
Characterization of ParTI Phoswiches Using Charged Pion Beams

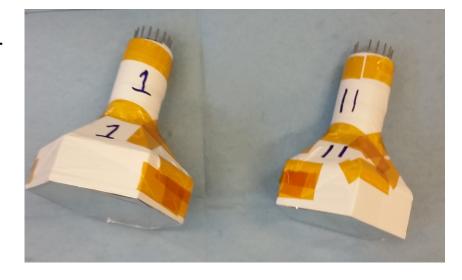
E. Churchman^{a,b}, A. Zarrella^a, M. Youngs^a, S. Yennello^a
^aCyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
^bDepartment of Physics, Texas Lutheran University, Seguin, Texas 78155, USA

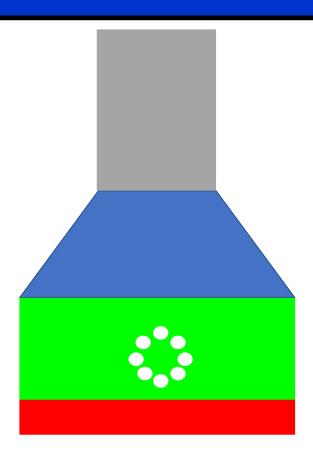


Motivation and Background

- Partial Truncated Icosahedron (ParTI) detector array consists of phoswiches and is designed to measure charged pions (π) emitted in pionic fusion reactions
- Pulse shape discrimination (PSD) particle identification (PID) can be achieved for light charged particles using fast vs. slow pulse shape discrimination
- π also identified by the characteristic decay pulse of their muon (μ) daughters
- 4 phoswiches at PSI
 - π^+ , π^- , and proton beams

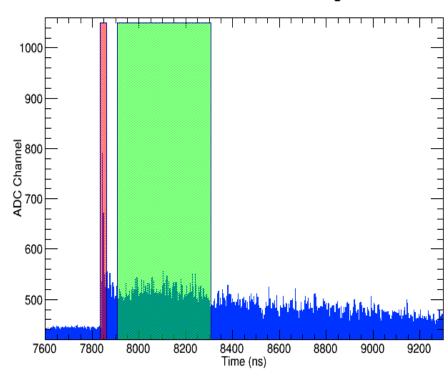
The ParTI Array


- ≈ 9" diameter
- 15 phoswiches
 - Each with own frame and angled tabs


Phoswiches

- Phoswich 2 scintillating components, PMT
 - EJ-212 scintillating plastic
 - Fast response
 - CsI(Tl) crystal
 - Slow response
 - Sensitive to charged and neutral particles
 - PID by energy deposition in 2 components

Particles and Phoswiches

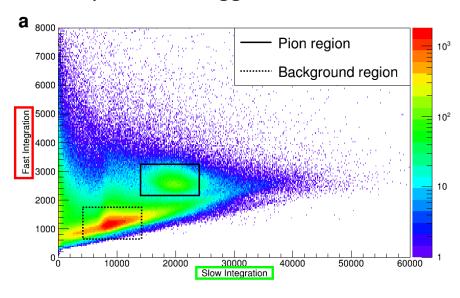

- 1) Fast plastic (red)
- 2) Slow CsI(Tl) (green)
- 3) Light Guide (blue)
- 4) PMT (grey)
- 5) Particle from reaction (black)
- 6) Photons emitted from scintillators (white)

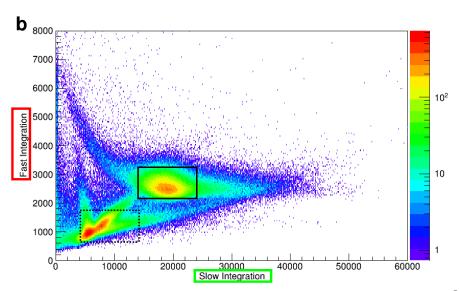
Fast and Slow Integration – How it works

- Energy deposited by particles
 - Photon response
 - Photons converted to cascade of e^{+/-}
 - Voltage generated on PMT
 - Converted to counts of photons/time
- Each pulse has 2 regions
 - Fast (red)
 - Slow (green)
- Integrate area under each region

Fast and Slow Scintillation Regions

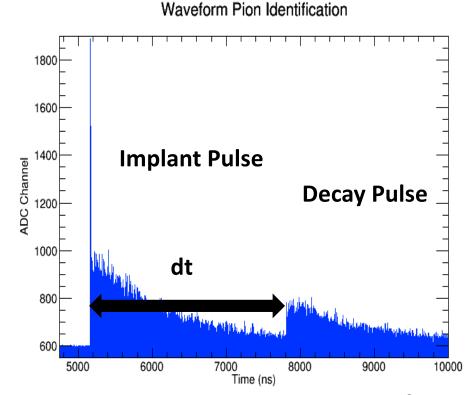
Fast vs. Slow Integration – PID


• Yields PID lines


- Based on relative energy lost
- Photons produced proportional to energy deposit
- Energy deposited unique to particle

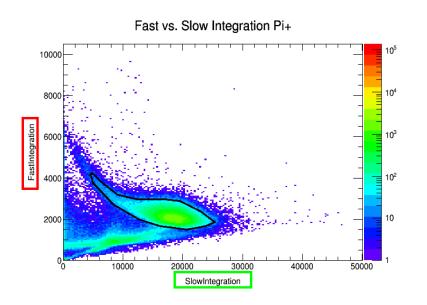
Muon Decay Trigger

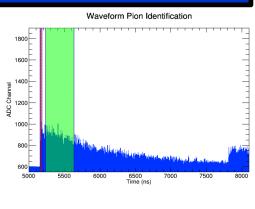
- Implemented in place of a singles trigger
- Trigger occurs only on possible π -candidate events
 - Only if CFD is triggered 2nd time

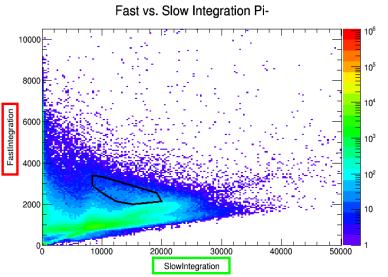

Detecting π Through Digitized Waveforms

- π decay not easily detectable
 - 26 ns mean lifetime
 - 4.12 MeV energy deposit

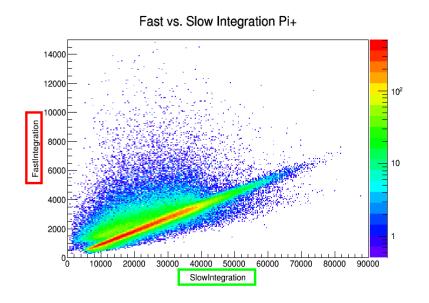
•
$$\pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$$

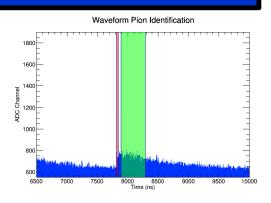

$$\bullet \ \pi^- \rightarrow \ \mu^- + \ \bar{\nu}_\mu \ \rightarrow \ e^- \ + \ \bar{\nu}_e \ + \ \nu_\mu$$

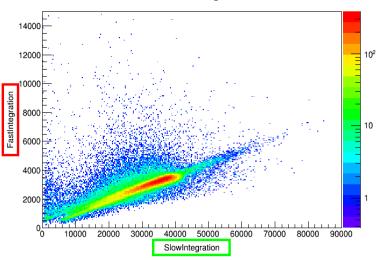

- 2197 ns μ mean lifetime
- Up to 50 MeV energy deposit
- 2nd pulse in waveform
 - Decay in detector
 - Difference = dt


Fast vs. Slow Integration for Implant Pulse

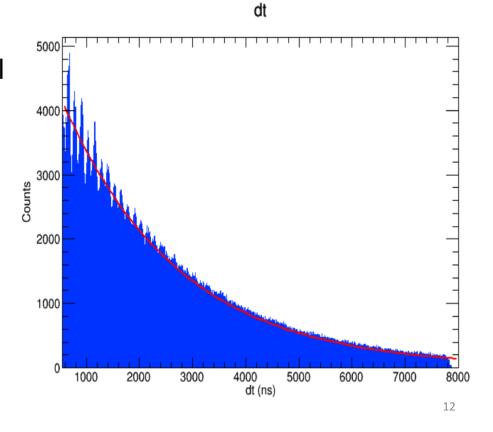
- Cuts gate π section
 - Analyze π decay inside gate




10

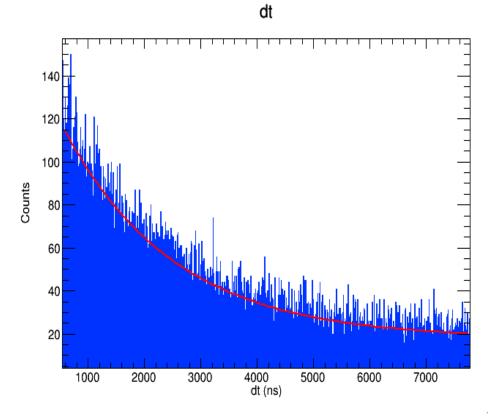

Fast vs. Slow Integration for Decay Pulse

- PSD on decay pulse
 - Possible way to ID $\boldsymbol{\pi}$



dt and Decay Curves for π^+

- dt corresponds to the time of survival for a muon
- Plotting dt
 - Exponential curve (red)
 - Generated decay constant
 - λ_{μ} =4.55 E -4 ns⁻¹
 - λ_{π^+} =4.57 E-4 ± 3.83 E-7 ns⁻¹



dt and Decay Curves for π^-

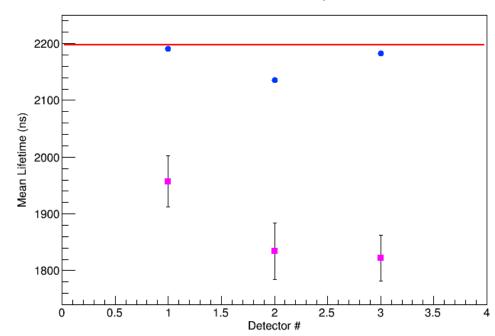
Generated decay constant

•
$$\lambda_{\mu} = 4.55 E-4 ns^{-1}$$

•
$$\lambda_{\pi}^{-}$$
 = 5.11 E-4 \pm 1.27 E-5 ns⁻¹

Mean Lifetime of the Decaying Particle

Inverse of decay constant


•
$$\tau_{\mu} = 2197 \, ns \, (red)$$

π^{+} (blue) $\tau_{1} = 2190 \pm 2 \, ns$ $\% \, error_{1} = 0.32\%$ $\tau_{2} = 2136 \pm 2 \, ns$ $\% \, error_{2} = 2.78\%$ $\tau_{3} = 2182 \pm 3 \, ns$ $\% \, error_{3} = 0.68\%$

π^- (magenta)

$$au_1 = 1957 \pm 51 \, ns$$

 $\% \, error_1 = 10.9\%$
 $au_2 = 1832 \pm 47 \, ns$
 $\% \, error_2 = 16.6\%$
 $au_3 = 1822 \pm 42 \, ns$
 $\% \, error_3 = 17.1\%$

Mean Lifetime Comparison

Conclusions

- Using decay trigger increases the selectivity for π by an order of magnitude
- Fast vs. Slow PID methods for the phoswiches allow for π identification and separation from other light charged particles
- Decay curves for μ daughter can be reproduced by focusing on the π implant region to further identify the original presence of a π in its PID region

Acknowledgements

- I would like to thank Andrew Zarrella, Dr. Sherry Yennello, and Mike Youngs for their mentorship.
- The Cyclotron Institute at Texas A&M University
- The Department of Energy (DE-FG02-93ER40773)
- National Science Foundation (PHY 1659847)
- The Welch Foundation (A-1266)