Precise Measurement of α_K for the 39.76-keV *E3* transition in 103 Rh:

A Further Test of Internal Conversion Theory

Blake Bryant H.I. Park, N. Nica, V.E. Iacob, J.C. Hardy

Theory

L shell

Internal Conversion

γ Ray Emission

Total Internal Conversion Coefficient

$$\alpha = \alpha_K + \alpha_L + \alpha_M + \dots$$

Theory

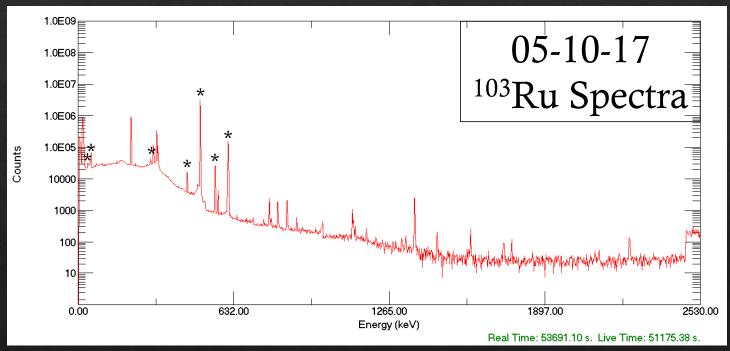
$$\alpha_{K} = \frac{e_{K}}{\gamma_{K}} = \frac{\frac{N_{K}}{\omega_{K} \varepsilon_{K}}}{\frac{N_{\gamma}}{N_{\gamma}}} = \frac{N_{K}}{\omega_{K} \varepsilon_{K}} \frac{\varepsilon_{\gamma}}{N_{\gamma}}$$

 α_{K} =K shell internal conversion coefficient e_{K} =number of emitted electrons γ_{K} =number of emitted gamma rays ω_{K} =fluorescence yield

 N_K =number of detected x-rays N_V =number of detected gamma rays ϵ_K =detector efficiency for x-rays ϵ_V =detector efficiency for gamma rays

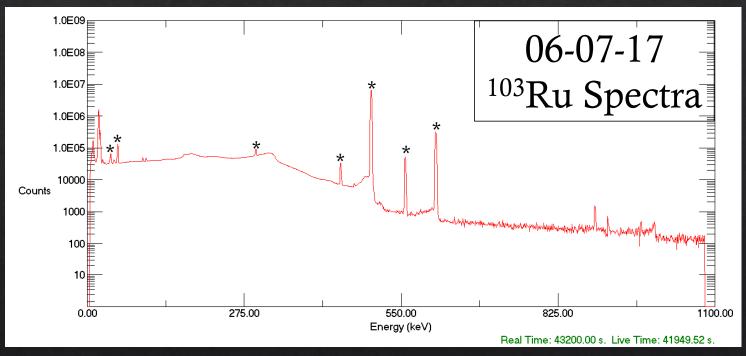
Source Preparation

- •Commercial sample of high chemical purity Ruthenium Chloride [natural abundance]
- •Chemically converted into Ruthenium Nitrate
- •Electrochemically deposited on aluminum backing, baked into Ruthenium Oxide
- •Thermal Neutron Activation

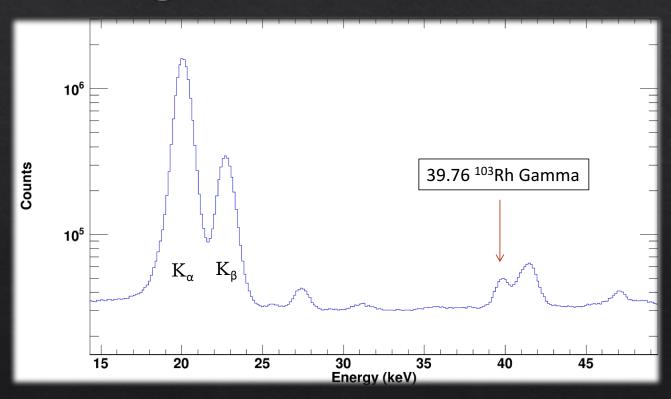


Detector

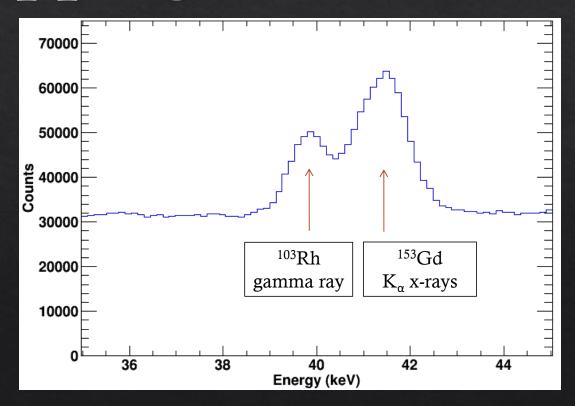
- •HPGe Detector
- •±0.15% Relative Precision efficiency calibration
- •Cooled to extremely low temperatures using liquid nitrogen



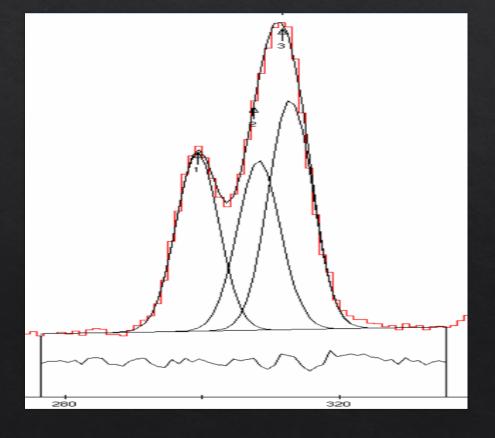
Impurity Analysis


Impurities: 105Rh, 97Ru, 96Tc, 97mTc, 24Na, 46Sc, 65Zn, 60Co, 140La, 153Gd, 161Tb, 199Au

Impurity Analysis


Impurities: 46Sc, 153Gd

Region of Interest


Overlapping Peaks

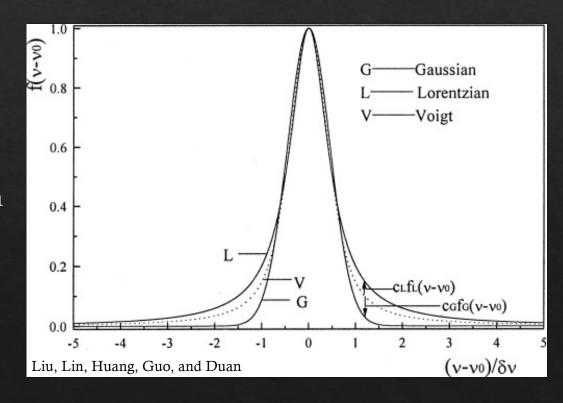
- •39.87 keV ¹⁰³Rh gamma ray
- • K_{α} x-ray group from ¹⁵³Gd
- • $K_{\alpha 1}$ at 41.5 keV
- • $K_{\alpha 2}$ at 40.9 keV

GF3 Fit

- Fitting program from Radware Package
- Three Gaussian structures and a background function

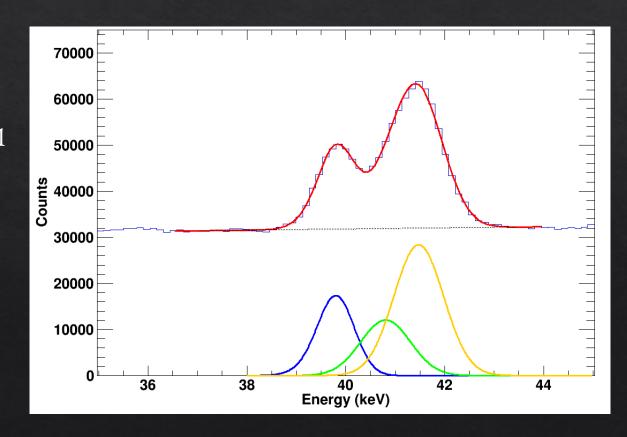
Corrections

- $\omega_{\rm K}$ =fluorescence yield=0.809(4)
- ϵ_{K} =detector efficiency for x-rays=0.9042
- $\Leftrightarrow \varepsilon_v = \text{detector efficiency for gamma rays} = 1.0103$
- F_1 =attenuation correction=1.0049
- ♦F₂=Voigt correction=1.0012
- ♦ ¹⁰³Ru impurity:12.68(14)%
- ♦ 97Ru impurity: 0.098(9)%
- ♦ 97mTc impurity: 0.077(8)%


Preliminary Result

Experimental	Vacancy	No Vacancy
134.6(19)	135.2	127.4

The preliminary experimental value demonstrates that *the atomic vacancy* created in the internal conversion process must be considered in theoretical calculations.


Gamma vs. Voigt Functions

- Gamma and x-rays are inherently shaped as a Lorentzian function
- Detected gamma rays well described by Gaussian function
- Detected x-rays not well described by Gaussian functions but are by Voigt Functions

ROOT Fit

- •ROOT fit Framework developed by CERN
- •Normalized Chi-squared=4.1
- •Blue Skewed Gaussian
- •Green $K_{\alpha 2}$ Voigt
- •Yellow $K_{\alpha 1}$ Voigt

Acknowledgements

