A PYTHIA Simulation Study of Direct-Photon and π^0 -Triggered Hadron Correlations in p+p Collisions at $\sqrt{s_{NN}}=200~{\rm GeV}$

By Chris Marble (REU Student, Tarleton State University)
Advisor: Dr. Saskia Mioduszewski (Texas A&M University)
A&M Cyclotron REU Presentation
Aug. 7th, 2015

Outline

- Background and Motivation
- PYTHIA Simulation Conditions and Analysis
- Comparison of Simulation vs. STAR Data
- Study of pT trigger/pT parton distribution
- Future Work

Background

- Relativistic Heavy Ion Collider (RHIC) collides Au+Au at 0.99995 c.
- The collision is believed to temporarily create a new state of matter called Quark Gluon Plasma.
- Early collisions of quarks and gluons (within protons and neutrons) in the Au nuclei can result in hard scattering. However in Au+Au collisions hard scattered partons must pass through QGP.

Image from:
http://www.staff.scienc
e.uu.nl/~misch101/res
earch.htm

Motivation

- Simulation of photon + jet versus jet + jet production
 - How well are per-trigger yields measured in p+p reproduced by simulation?
 - What can simulation tell us about how much of the jet energy is carried by the trigger particle?

Image 1 from: http://inspirehep.net/ record/853601/plots Image 2 from: http://wwwcdf.fnal.gov/physi cs/new/qcd/run2/ ue/chgjet/

Motivation

- Simulation of photon + jet versus jet + jet production
 - How well are per-trigger yields measured in p+p reproduced by simulation?
 - What can simulation tell us about how much of the jet energy is carried by the trigger particle?

Image 1 from:
http://inspirehep.net/
record/853601/plots
Image 2 from:
http://wwwcdf.fnal.gov/physi
cs/new/qcd/run2/
ue/chgjet/

Motivation

- Simulation of photon + jet versus jet + jet production
 - How well are per-trigger yields measured in p+p reproduced by simulation?
 - What can simulation tell us about how much of the jet energy is carried by the trigger particle?

Image 1 from: http://inspirehep.net/ record/853601/plots Image 2 from: http://wwwcdf.fnal.gov/physi cs/new/qcd/run2/ ue/chgjet/

Simulation Parameters

- Using the PYTHIA 8.185 event generator
- •Kept events with a photon or π^0 with a high transverse momentum (pT) > 5 GeV/c and pseudorapidity ($|\eta|$) < 1.

Kept associated hadrons that were charged with a

pT > 1 GeV/c and $|\eta|$ < 1.

Analysis

- Analyzed events with transverse trigger momentum 8 < pT < 16 GeV/c (previous publication) or 12 < pT < 20 GeV/c (current paper draft)
- Studied pT of associated particles in away jet and near jet (π^0 case).
- Made separate histograms for different zT cuts
- $zT \equiv pT^{assc}/pT^{trig}$

8-16 GeV/c Histograms Analyzed:

- 1. Fit two Gaussians and a uniform background.
- Took background value and uncertainty from the fit
- 3. Integrated histogram peaks (-0.63, 0.63) and (π 0.63, π + 0.63)
- Subtracted the background
- 5. Normalized by dividing by the number of trigger particles.

12-20 GeV/c Histograms Analyzed:

- 1. Integrated peaks (-1.4, 1.4) and $(\pi 1.4, \pi + 1.4)$
- Subtracted the background calculated as the average value over (-1.4, -0.8) and (0.8, 1.4)
- 3. Normalized by dividing by the number of trigger particles.

Compare Sim. to Exp. blue to brown (8-16 GeV/c), red to black (12-20 GeV/c)

Compare Sim. to Exp. for the away side jet with π^0 triggers Note: blue to brown (8-16 GeV/c) is not in agreement at high zT

Away Side Photon Trigger 1/Nt*(dN/dzt) vs. zT

Simulation Verification

- 12-20 GeV/c simulation appears to be in agreement with the STAR Data
- 8-16 GeV/c simulation is also in agreement with STAR Data except for high-zT π^0 away jet values
- Reason is undetermined.

Now lets compare the away side jet zT yields for photon triggers versus π^0 triggers.

8-16 GeV/c Pi0 Peak: 0.77 ± 0.02

12-20 GeV/c Pi0 Peak: 0.78 ± 0.02

*where pT Parton is the pT of the awayside jet parton

 π^0 simulation data unshifted

 π^0 pT 8-16 GeV/c shifted 0.77*zT π^0 pT 12-20 GeV/c shifted 0.78*zT ₁₉

Photon vs. π^0 summary

- • π^0 triggers have on average approximately 80% of the pT of the scattered parton
- •Correcting for this results in yields for π^0 and photon triggering that are close to agreement

Future Work

- •Understand pT π^0 Trigger/pT Parton > 1
- •Look at the effect of removing kT (intrinsic parton pT) from the π^0 simulation
- •Look at the effects of removing Initial and Final State Radiation from the π^0 simulation.

Acknowledgements

- My advisor: Dr. Saskia Mioduszewski
- Dr. Nihar Sahoo for providing guidance as well as the pT 12-20 GeV/c experimental data
- Derek Anderson for helping me learn Root and PYTHIA as well as providing the initial simulation code

DOE Grant No. DE-FG02-07ER41485

8-16 GeV/c data from: Abelev et al. (STAR Collaboration), Phys. Rev. C 82 (2010)

12-20 GeV/c data from: STAR Preliminary data, STAR manuscript to be submitted for publication

Extra Slides

Additional Information

- Initial and Final State Radiation Enabled
- pTHatMin = 4 GeV/c (minimum invariant pT considered)
- 500M HQCD events simulated:
 - 86502 8-16 GeV/c Pi0 Triggers
 - 307358 Associated Particles
 - 6447 12-20 GeV/c Pi0 Triggers
 - 30764 Associated Particles
- 1M Prompt Photon events simulated:
 - 45512 8-16 GeV/c Photon Triggers
 - 93292 Associated Particles
 - 6677 12-20 GeV/c Photon Triggers
 - 18432 Associated Particles

From Primary Hard Scatter: -23

From Secondary Hard Scatter: -33

From Other (Decay, Baryogenesis of quarks not involved in the hard scatter, etc.): -500

8-16 GeV/c Pi0 Peak: 0.78 ± 0.02

12-20 GeV/c Pi0 Peak: 0.79 ± 0.02

*where pT Parton is the pT of the awayside jet parton

8-16 GeV/c Photon Peak: 1.07 ± 0.02

12-20 GeV/c Photon Peak: 1.04 ± 0.02

*where pT Parton is the pT of the awayside jet parton

From Primary Hard Scatter: -23

From Secondary Hard Scatter: -33

From Other (Decay, Baryogenesis of quarks not involved in the hard scatter, etc.): -500

Photon Simulation without Initial and Final State Radiation (ISR and FSR), Multi-Parton Interactions (MPI) and Initial Parton pT (kT)

Note: The red line completely overlaps the blue line