SIMULATION STUDY OF BACKGROUND PARTICLES IN THE MUON TELESCOPE DETECTOR AT THE STAR EXPERIMENT

Matthew Breen

Thanks to Dr. Mioduszewski and Yanfang Liu
Overview

- Background
- Simulation data
- Cuts
- Survival Probabilities (pions, kaons, protons, and muons)
- p_T Distributions
- Delta Z distributions
Background

- The newly built Muon Telescope Detector probes the QGP through the detection of:
 - di-muon pairs from QGP thermal radiation, quarkonia, light vector mesons, resonances in QGP, and Drell-Yan production
 - single muons from the semi-leptonic decays of heavy flavor hadrons.

- The MTD is located on the outside of the time projection chamber (TPC)
 - The TPC is the main tracking detector for STAR

- Non-muon particles are intercepted by the barrel-electromagnetic calorimeter (BEMC) and the steel from the magnet; however not all of the background particles are filtered
Simulation Data

- Run 14: 14.5 GeV Au+Au collision

- Omega production
 - $\Omega^- \rightarrow \Lambda + K^-$
 - $\Lambda \rightarrow p + \pi^-$
 - $K^- \rightarrow \mu^- + \nu^-$
 - # K: 141866
 - # π: 138300
 - # p: 172865
 - # μ: 16564

- Phi production
 - $\phi \rightarrow K^- + K^+$
 - $K^{\pm} \rightarrow \pi^{\pm} + \pi^{\pm} + \pi^{\mp}$
 - # K: 309034
 - # π: 11912
 - # p: 4790
 - # μ: 15882
Cut Numbers

1. p_T cut: $1.2 \text{ GeV/c} < p_T < 30 \text{ GeV/c}$
2. NHitsFit cut: NHitsFit > 20
3. NHitsDedx cut: NHitsDedx > 15
4. Pseudorapidity cut: $|\eta| \leq 0.65$
5. Tracks associated with MTD hit
6. Dedx (ionization energy loss the in TPC) cut: $-1 < \text{NSigmaPion} < 3$

Cuts on the distance between track projection and MTD hits for:

1. Y coordinate: $|\Delta Y| < 20$
2. Z coordinate: $|\Delta Z| < 20$
Analysis

- Investigate the survivability of background particles
 - what percent survive all the cuts
- The shape of Delta Z distribution to estimate the number of background particles that survive these cuts in the real data
0.28% of the pions, that have a $p_T > 1.2$ GeV, survive the cuts.
0.29% of the kaons, that have a $p_T > 1.2$ GeV, survive the cuts.
0.16% of the protons, that have a $p_T > 1.2$ GeV, survive the cuts.
20% of the muons, that have a $p_T > 1.2$ GeV, survive the cuts.
After cut 7
- 31 pions survive out of the original 150212
- 1225 kaons survive out of the original 141866
- 309 protons survive out of the original 177665
After cut 7, 1277 muons survive out of the original 32446
The background particles have a width of 18.08 ± 0.91
Kaons have a width of 22.02 ± 1.49
Muons have a width of 9.789 ± 0.466
The signal fit (suspected muons) has a width of 8.988 ± 0.010

The background fit has a width of 25.2 ± 0.1

Background particles make up about 38% of the data
Summary

- 0.28% of the pions, that have a $p_T > 1.2$ GeV, survive the cuts.
- 0.29% of the kaons, that have a $p_T > 1.2$ GeV, survive the cuts.
- 0.16% of the protons, that have a $p_T > 1.2$ GeV, survive the cuts.
- 20% of the muons that have a $p_T > 1.2$ GeV survive the cuts, 100 X greater survivability than the background.
- Background particles have a Delta Z width of 18.08 ± 0.91.
- Kaons have a Delta Z width of 22.02 ± 1.49.
- Muons have a Delta Z width of $9.789.08 \pm .466$.
- The Delta Z widths agree well with the double Gaussian fit.
Backup slides
Track Matching to MTD hits

Delta Z

Delta Y
What’s next?

- More Statistics
 - Simulate flat p_T and weight each entry with true p_T
- Time of flight cut (TOF)
Pt distribution for background particles

Entries: 781015
Mean: 1.374
RMS: 0.9541