Further Measurement to Test Electron Conversion Theory: 116In Measurement for Detector Calibration

Sondra Miller1,2; Ninel Nica, PhD1; John Hardy, PhD1; John Goodwin1

ABSTRACT

Precise internal conversion coefficients (ICCs) are vital to the study of nuclear decay schemes, determining transition rates, spin and parity designations, and branching ratios. However, there are very few experimental tests of the calculated ICCs and in fact there are only ~10 measurements available with errors of less than 1%. Such a paucity of data complicates scientists’ efforts to determine what theoretical calculations should be used to model the ICC.

The goal of our present experiment is to determine the α_k for the 65.7-keV M4 transition in 119Sn. However, the energy of the 119Sn x-rays is below the energy range that our HPGe detector is accurately calibrated for. The β-decay of 116In populates states in 116Sn which produce a few strong transitions with well established conversion coefficients. This allows us to calibrate our detector at the energy of the Sn x-rays, which is an essential requirement for the measurement of the 119Sn ICC.

Preparation and Irradiation of the Source

- In(NO$_3$)$_2$(aq) placed on Mylar tape to produce micron-thick film of indium nitrate
- In is isotopically purified to minimize impurities
- Adhesive Mylar tape placed on film following solvent evaporation

Calibrating Detector for 119mSn

- Nuclear de-excitation energy leads to γ-ray emission or to electron emission
- Electron emission leaves hole; filled by higher level electron with emission of an x-ray
- ICC (α) measures ratio of electrons versus γ-rays emitted
- Can be expressed as the sum of ratios for each energy shell

$\alpha = \sum \frac{\alpha_k \cdot \gamma \cdot n \cdot i}{\gamma \cdot n \cdot i}$

Preliminary Results

- 119mSn: α_k Calculations
 - Experimental Value
 - Theoretical Values
 - $\alpha_k = 1601$ (40)
 - α_k (no hole) = 1544
 - α_k (hole) = 1618

 Good agreement between experimental and theoretical values.

Impurity Identification

- 116In: Number of Photons Detected at Given Energies; Source Nuclei of Peaks Labeled
- Values of α_k are well-known for these two peaks
- Theoretical calculations agree on these values
- 116In decays to 116Sn leading to 138 [keV] x-rays and to Sn x-rays

Decay Schemes

Decay Scheme of 116In (and 116Sb) Transitions to 116Sn.