Investigating the Fragmentation of Excited Nuclear Systems

Jennifer Erchinger
2010 Cyclotron REU
Advisor: Dr. Sherry Yennello
Equation of State (EoS)

EoS for isospin asymmetric nuclear matter:

\[E(\rho, \delta) = E(\rho, \delta = 0) + E_{\text{sym}}(\rho)\delta^2 + O(\delta^4) \]

- **baryon density** \(\rho = \rho_n + \rho_p \)
- **isospin asymmetry** \(\delta = (\rho_n - \rho_p)/(\rho_n + \rho_p) \)
 - \(\delta = (N-Z)/(N+Z) \)
- **energy per nucleon in symmetric nuclear matter** \(E(\rho, \delta = 0) \)
- **nuclear symmetry energy** \(E_{\text{sym}}(\rho) \)

Symmetry Energy

- Symmetry Energy related to Isospin
Heavy Ion Collisions

- Nuclear collision reactions...
<table>
<thead>
<tr>
<th>Time (fm/c) = 1</th>
<th>Heavy Ion Collisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Detect the Z and A of most fragments with NIMROD, and free neutrons with the Neutron Ball.
Comparing Identified Fragments

\[R_{21}(N, Z) = \frac{Y_2(N, Z)}{Y_1(N, Z)} = C \exp(N\alpha + Z\beta) \]

- **Neutron-rich source**
- **Neutron-poor source**
Comparing Identified Fragments

\[R_{21}(N, Z) = \frac{Y_2(N, Z)}{Y_1(N, Z)} = C \exp(N\alpha + Z\beta) \]

- Neutron-rich source

- Neutron-poor source
Comparing Identified Fragments

\[R_{21}(N, Z) = \frac{Y_2(N, Z)}{Y_1(N, Z)} = C \exp(N\alpha + Z\beta) \]

- \(\alpha \) is the slope
- \(\beta \) is the distance between

\[\alpha = \frac{4C_{\text{sym}}}{T} \left[\left(\frac{Z}{A} \right)_1 - \left(\frac{Z}{A} \right)_2 \right] = \frac{4C_{\text{sym}}}{T} \Delta. \]

Tsang, Phys. Rev. C 64, 041603(R) (2001)

\[R_{21}(N, Z) = \frac{Y_2(N, Z)}{Y_1(N, Z)} = C \exp(N\alpha + Z\beta) \]

Neutron-rich \hspace{1cm} Neutron-poor

Tsang. Phys. Rev. C 64, 041603(R) (2001)
Evolution of Isoscaling

- System-to-System Isoscaling
 - Tsang at MSU, etc.
 - Sources are compound nuclei
 - Isoscaling with global alpha and global beta
 - Lines are parallel and evenly spaced, but do not align perfectly with points

Tsang. Phys. Rev. C 64, 041603(R) (2001)
Isostopic Scaling... It can get us to the symmetry energy

- Ratio of isotopic yields

\[R_{21}(N, Z) = \frac{Y_2(N, Z)}{Y_1(N, Z)} = C \exp(N\alpha + Z\beta) \]

- Relation of \(\alpha \) to \(E_{\text{sym}} \) \((C_{\text{sym}}) \)

\[\alpha = \frac{4C_{\text{sym}}}{T} \left[\left(\frac{Z}{A} \right)_1^2 - \left(\frac{Z}{A} \right)_2^2 \right] = \frac{4C_{\text{sym}}}{T} \Delta. \]

Source Definition

- ^{86}Kr projectile + ^{64}Ni target = 150Compound Nucleus
- ^{78}Kr projectile + ^{58}Ni target = 136Compound Nucleus
Source Reconstruction

- Peripheral collisions → Quasiprojectile (QP) & Quasitarget (QT)
- Reconstructed QP as source
- Distribution of QP sources (in N/Z of source)
- Better defines source

Source Reconstruction

- Peripheral collisions \rightarrow Quasiprojectile (QP) & Quasitarget (QT)
- Reconstructed QP as source
- Distribution of QP sources (in N/Z of source)
- Better defines source
Transition in Isoscaling

System-to-System Isoscaling

WHY?

Bin-to-Bin Isoscaling

Evolution of Isoscaling

- Bin-to-Bin Isoscaling
 - Combine systems and divide into bins
 - Isoscaling with individual alphas and betas for each Z
 - Better resolution from better definition of the delta

- Better defined α and Δ should mean better defined C_{sym}

Wuenschel used bins in N/Z, of width 0.06, and always compared bins 2 and 4.

But what if you changed the width, or range, in N/Z, or changed the bins that were being compared?

- Bin widths: 0.02 – 0.28 in increments of 0.02, and 0.28-0.60 in increments of 0.04
- All comparisons of Bins 1-5
Fragment Yield

N/Z of source

NZdist

Entries 158829
Mean 1.173
RMS 0.1105
\[\alpha = \frac{4C_{\text{sym}}}{T} \left[\left(\frac{Z}{A} \right)_{1}^{2} - \left(\frac{Z}{A} \right)_{2}^{2} \right] = \frac{4C_{\text{sym}}}{T} \Delta. \]

Alpha vs. Bin Width for all combinations

Delta vs. Bin Width for all combinations

Bin comparisons trend by bin separation
Convergence of \(\alpha \) and \(\Delta \) for large bin widths
$\frac{\alpha}{\Delta} = \frac{4}{T} C_{\text{sym}}$

Roughly around the C_{sym}

Convergence around 0.3
Minimum of the relative error in alpha is with a bin width of 0.18 (in N/Z) using the 5/2 comparison.
Theoretically, α should equal $-\beta$. Ours is pretty close.
Some outliers, but groups are the smallest three bin width.
Consistent α/Δ means consistent C_{sym}. All the offset groups involve Bin 1 and the 3 smallest bin widths!
The excitation energies of bin 1 are quite a bit higher than the other bins!

E^* is proportional to T^2 and a higher temperature would mean lower α
Bin 1 combinations are obviously off the line.
What We’ve Learned So Far

° Varying the source selection (bin width) changes the isoscaling
° Using a bin width of 0.18 (in N/Z) when comparing bins 5 and 2 will give the optimum results
° Some characteristic of bin 1 is causing a systematic difference in the α, shown on the α vs. Δ plot
Evolution of Isoscaling

Tsang, Phys. Rev. C 64, 041603(R) (2001)

Where we went next…

- Examine Bin 1
 - Is the excitation energy of bin 1 different from the other bins?

- N/Z to N/A
 - N/Z has been used by convention
 - Technically, isoscaling should be in terms of concentration (N/A)
These are the N/Z bins used by Wuenschel in her isoscaling.
These are the corresponding N/A bins. Variations in the N/A bins can also be studied.
N/Z bins of 0.10 width

N/A bins of 0.020 width
Conclusions

- Source definition affects quality of isoscaling, alpha, C_{sym}
- Bin width of 0.18, comparison of bins 5/2 are optimal
- Bin 1 has significantly higher excitation energy than the other bins, which affects α
Where do we go from here?

- Further exploration into excitation energy effects
- Possibly looking into the effect of free neutrons in the reconstruction
Acknowledgements

- SJY Group
- Cyclotron Institute
- National Science Foundation
- US Department of Energy
- YOU!
Questions?
References
