Production and separation of new radioactive beams with MARS

Livius Trache Cyclotron Institute, Texas A&M University

June 2009

REU group experiment – plan for the week

June 22-29, 2009

- Monday: general presentations, exp setup (day 1)
- Tuesday: presentations and setup cont'd (day 2)
 - Finish exp setup. Close target detector chamber
 - Calibr of gamma-ray det: energy and efficiency
- Wed-Thu-Fri: experiments
 - separation of ²⁰Na from ²⁰Ne primary beam on H₂ gas target at 3 energies (3 shifts separately)
 - stop ²⁰Na and study its beta-delayed alpha and gamma decay
- Sat-Sunday: look for new reaction to produce ²⁰Mg from same beam on ³He target (for experts and fans!)

Summary

- Introduction, general presentation LT
- MARS Momentum Achromat Recoil Spectrometer use for RNB prod
- Part 1 dr. Brian Roeder
- Part 2 Alexandra Spiridon
- 3. Experiment outline, exp setup for ²⁰Na and its decay: Matthew McCleskey
- 4. Radiation detection: general and specific Ellen Simmons
- 5. Gamma-ray det use and calibration prof. Abeer Alharbi
- 6. Prod and sep of ²⁰Mg Gopal Subedi (our group's REU student)

Monday:

1.

- set 3 shifts of 4 students each to work separately
- Visit MARS cave, present setup, start setting

Tuesday:

- Presentations (cont'd)
- Close target chamber, set gamma-ray (HPGe) det
- Calibrate HPGe detector

Nuclei: core of the matter, fuel of stars

barionic

Nuclear Physics for Astrophysics

H Introduction

- Questions on nucleosynthesis
- Problems in Nuclear Physics for Astrophysics
- Dictionary of terms
- Indirect methods in NPA with RNB (w. examples from TAMU)
 - A. Coulomb dissociation
 - B. Transfer reactions (ANC method)
 - C. Breakup of loosely bound nuclei
 - **D**. Variae β -decay, resonant elastic scattering, etc
 - E. Trojan Horse Method (non-RNB so far!)

Introduction

- Q: origin of chemical elements?!
 A: nucleosynthesis: BBN, in stars
 - H-burning, He-burning
 - CNO cycle, HCNO ...
 - s-process
 - r-process
 - rp-process
- Q: is nucleosynthesis finished or on-going?
 - A: yes and yes!
- Q: Elemental/isotopic abundances?!
- A: Elemental/isotopic abundances are indelible, unique fingerprints of cosmic processes (comment, not answer!)
- Quantitative evaluation of models need good NUCLEAR PHYSICS data – in laboratory for stars
- A: Fine, but is not trivial!

Dictionary of terms

- X(p,γ), (n, γ), (α , γ) radiative proton (n, α) capture reaction
- **\blacksquare** Cross section σ related to probab to have a reaction
- **\blacksquare** Reaction rate $R=N_A < \sigma v >$ integrates over Maxwell distr
- $= T_6 = T/10^6 K; T_9 = T/10^9 K$ (temp in million (billion K))
- Gamow peak region of contrib to R
- Astrophysical S-factor: in charged particle reactions, takes out the Coulomb barrier penetrability factor:

 $\sigma(E)=1/E^*\exp(-2\pi\eta)^*S(E)$

Cross section varies exponentially with energy S-factor varies slowly: S(E)=S(0)+S'(0)*E+...

Radiative capture reactions

- * Radiative capture reactions A(p, γ)B, A(α , γ), A(n, γ)
- * Non-resonant or resonant reactions.
- * At low energy; the probability that the incoming charged particle penetrates the Coulomb barrier:

$$P = \exp(-2\pi\eta), where \quad \eta(E) = \frac{Z_1 Z_2 e^2}{\hbar v}$$

* The cross section – astrophysical S-factor: $\sigma(E) = \frac{1}{E} \exp(-2\pi\eta) S(E)$

* Reaction rate per particle pair (integrate over E distr): $\langle \sigma \upsilon \rangle = \left(\frac{8}{\pi \mu}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_{0}^{\infty} S(E) \exp\left(-\frac{E}{kT} - \frac{b}{E^{1/2}}\right) dE$

- Reactions (that matter) take place in the Gamow energy window.
- Direct, or non-resonant part

* C. Rolfs and W. Rodney, "Cauldrons in the Cosmos".

Resonant Reaction Rate

* Resonant reactions are two-step processes.

$$\sigma_{\gamma} \propto \left| \left\langle E_{f} \left| H_{\gamma} \right| E_{r} \right\rangle \right|^{2} \left| \left\langle E_{r} \left| H_{f} \right| A + p \right\rangle \right|^{2}$$

* The cross section (Breit-Wigner):

$$\sigma(E) = \frac{\lambda}{4\pi} \frac{2J+1}{(2J_1+1)(2J_2+1)} \frac{\Gamma_p \Gamma_{\gamma}}{(E-E_r)^2 + (\frac{\Gamma}{2})^2}$$

* The contribution to the reaction rate:

$$\langle \sigma \upsilon \rangle_{res} = \left(\frac{2\pi}{\mu kT}\right)^{3/2} \hbar^2 \omega \gamma \exp\left(-\frac{E_r}{kT}\right)$$

where

$$\boldsymbol{\omega} \boldsymbol{\gamma} = \frac{2J_r + 1}{\left(2J_p + 1\right)\left(2J_t + 1\right)} \frac{\Gamma_p \Gamma_{\boldsymbol{\gamma}}}{\Gamma_{tot}}$$

Direct vs. indirect measurements

Direct: involve measurements at low energies (very low cross T. sections - nb, pb, fb), typically way above the Gamow region.

Fig. 1. The cross section of the Coulomb dissociation of ${}^{8}B$ as cross section of the ${}^{7}Be(p,\gamma){}^{8}B$ direct reaction.

FIG. 19: E1 ⁷Be(p,γ)⁸B S-factors inferred from Coulomb dissociation (CD) experiments. Bottom panel: absolute CD Sfactors, together with our direct results (with the 1⁺ resonance subtracted) and the best-fit DB curve to our direct low-energy data. Top panel: CD data plotted with a common normalization based on the mean value of 19.3 eV b for $S_{17}(0)$ determined by fitting each data set to the DB theory below 400 keV. Solid curve: DB calculation: dashed curve; Typel calculation. The experimental error bars shown in all cases are relative, and do not include scale-factor uncertainties.

Ē_{cm} (keV)

Example: ⁷Be(p,γ)⁸B Solar neutrino problem

$4^{1}H \rightarrow 4He + 2e^{+} + 2v$

Solar neutrinos

Another example: "22Na puzzle"

- γ rays from the decay of long-lived isotopes ²⁶Al, ⁶⁰Fe have been detected
- E=1.275 MeV γ ray following the decay of ^{22}Na predicted, but not observed by space gamma-ray telescopes

- what are the stellar reaction rates for the ${}^{22}Mg(p,\gamma){}^{23}AI$ and ${}^{22}Na(p,\gamma){}^{23}Mg$?

²³Al $\rightarrow\beta$ + ²³Mg^{*} \rightarrow ²²Na+p inverse of ²²Na(p, γ)²³Mg

- Study β-delayed p-decay and γ-decay to find resonances in ²²Na(p,γ)²³Mg
- Need to produce and separate ²³AI
- Study decays: βγ and βp

β decay study of pure RB samples

23 Al β - γ coincidence measured spectrum

²³Al β-delayed p-decay

Antti Saastamoinen et al., to be published

Remember

H Nuclear physics for astrophysics Use indirect methods (only) **#** We use RNB: Have to produce them MARS used for RNB prod and separation We use various exp methods – good to know and understand them!

Indirect methods for nuclear astrophysics

Example: ⁷Be(p,γ)⁸B Solar neutrino problem

$4^{1}H \rightarrow 4He + 2e^{+} + 2v$

Solar neutrinos

Neutrino fluxes from the Sun (Bahcall-Pinsonneault calc)

Solar Model vs. Exp., before June 2001

Solar Neutrinos	June 18, 2001
Super-Kamiokande The papers of the latest data and oscillation analyses appeared on PRL. 1) SOLAR B-8 AND HEP NEUTRINO MEASUREMENTS FROM 1258 DAYS OF SUPERKAMIOKANDE DATA. Published in Phys.Rev.Lett.86:5651- 5655,2001 2) CONSTRAINTS ON NEUTRINO OSCILLATIONS USING 1258 DAYS OF SUPERKAMIOKANDE SOLAR NEUTRINO DATA. Published in Phys.Rev.Lett.86:5656- 5660,2001	SNO First results of CC measurement MEASUREMENT OF CHARGED CURRENT INTERACTIONS PRODUCED BY B-8 SOLAR NUETRINOS AT THE SUDBURY NEUTRINO OBSERVATORY. Published in Phys.Rev.Lett.87:071301,2001
solar neutri	Futher confirmed by the NC measurement by SNO, Aprl-2002

New: PRL 89, 011301,-2 (2002)

⁸B neutrino flux: $5.21\pm0.27(\text{sta})\pm0.38(\text{sys}) \ge 10^6 \text{ cm}^{-2}\text{s}^{-1}$ Comp with SSM: $5.79\cdot(1.\pm0.23)$ (Bahcall, Pinsonneault, 2004) (using S₁₇(20)=20.6 eVb; PRL 92, 121301(2004))

A. Coulomb dissociation

Momentum Achromat Recoil Separator

RB in-flight production

Transfer reactions for ANCs

¹⁰B(⁷Be,⁸B)⁹Be

¹⁴N(⁷Be,⁸B)¹³C

C. Breakup (one-nucleon removal r.)

Summary of the ANC extracted from ⁸B breakup with different interactions

Data from:

- **F. Negoita et al, Phys Rev C 54,** 1787 (1996)
- B. Blank et al, Nucl Phys A624, 242 (1997)
 D. Cortina-Gil e a, EuroPhys J. 10A, 49 (2001).
- **R. E. Warner et al. BAPS 47,** 59 (2002).
- J. Enders e.a., Phys Rev C 67, 064302 (2003)

Summary of results:

The calculations with 3 different effective nucleon-nucleon interactions are kept and shown: JLM (blue squares),

"standard" μ =1.5 fm (black points) and Ray (red triangles).

S₁₇ astrophysical factor (ours)

New: $S_{17}(0) = 18.0 \pm 1.9 \text{ eV} \cdot \text{b}$ (G Tabacaru ea, PRC 73, 2006) For comparison: (⁷Be,⁸B) proton transfer at 12 MeV/u A. Azhari e.a. – two targets: ¹⁰B $S_{17}(0) = 18.4 \pm 2.5 \text{ eVb}$ (PRL '99) 14 N $S_{17}(0) = 16.9 \pm 1.9 \text{ eVb}$ (PRC '99) Average: Phys Rev C 63, 055803 (2001) $S_{17}(0) = 17.3 \pm 1.8 \text{ eVb}$ $^{13}C(^{7}Li,^{8}Li)^{12}C$ at 9 MeV/u (LT e.a., PRC 56, June 2003)) $C_{tot}^2 = 0.455 \pm 0.047 \text{ fm}^{-1}$ $S_{17}(0) = 17.6 \pm 1.7 \text{ eVb}$ New average: $S_{17}(0) = 18.2 \pm 1.8 \text{ eV} \cdot \text{b}$

Neutrinos from Standard Solar Model

VOLUME 92, NUMBER 12

PHYSICAL REVIEW LETTERS

week ending 26 MARCH 2004

What Do We (Not) Know Theoretically about Solar Neutrino Fluxes?

John N. Bahcall*

School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA

M. H. Pinsonneault[†]

Department of Astronomy, The Ohio State University, Columbus, Ohio 43210, USA (Received 16 December 2003; published 25 March 2004)

conservation). Comparing the measured values with the theoretical predictions, we find for BP04:

$$\phi(p\,p)_{\text{measured}} = (1.02 \pm 0.02 \pm 0.01)\phi(pp)_{\text{theory}},\quad(1)$$

$$\phi(^{8}B)_{\text{measured}} = (0.88 \pm 0.04 \pm 0.23)\phi(^{8}B)_{\text{theory}},$$
 (2)

$$\phi(^7\text{Be})_{\text{measured}} = (0.91^{+0.24}_{-0.62} \pm 0.11)\phi(^7\text{Be})_{\text{theory}}.$$
 (3)

In Eqs. (1)–(3), the 1σ experimental uncertainties are

used improved values for direct measurements of the ${}^{7}\text{Be}(p, \gamma){}^{8}\text{B}$ cross section, $S_{20 \text{ keV}}({}^{7}\text{Be} + p) = 20.6 \pm 0.8 \text{ eV b}$ [5], and the calculated p-p, $S_0(pp) = 3.94(1 \pm 0.004) \times 10^{-25}$ MeV b, and hep, $S_0(hep) = (8.6 \pm 1.3) \times 10^{-20}$ keV b, cross sections [6]. The reactions that produce the ${}^{8}\text{B}$ and hep neutrinos are rare; changes in their production cross sections affect, respectively, only the ${}^{8}\text{B}$ and hep fluxes. The 15% increase in the calculated ${}^{8}\text{B}$ neutrino flux, which is primarily due to a more accurate cross section for ${}^{7}\text{Be}(p, \gamma){}^{8}\text{B}$, is the only significant change in the best estimate fluxes.

Using our value(s): $S_{17}(0) = 18.7 \pm 1.9 \text{ eVb} => S_{17}(20) = 18.0$ $\Phi_{exp}(^{8}B) = [1.03 \pm 0.08 \pm 0.23] \Phi_{th}(^{8}B)$

future work, ino fluxes on cross section measured to

uncertainty in the theoretical calculation, but the opposite is true for the p-p and ⁷Be neutrino fluxes.

better than $\pm 5\%$ (1 σ) (a factor of 2 improvement) in order that the uncertainty in this reaction not limit the interpretation of future ⁷Be solar neutrino experiments.

Conclusions - "other methods"

- Useful to have various methods/tools at hand
- Medium size facilities useful:
 - may get things done sooner and cheaper!
 - Valuable for (hands-on) education of students and postdocs!
 - Competition is healthy and necessary!

Nuclear physics for astrophysics. Summary

Indirect methods

transfer reactions (proton or neutron)

- E ~ 10 MeV/nucleon
- Better beams (energy resol, emittance)
- Magnetic spectrometers at 0° resolution, large acceptance, raytrace reconstr.
- breakup

#

- ~ 30-100 MeV/nucleon
- Can neutron breakup be used for (n,γ) ?! (yes, but need n-nucleus potentials)
- Spectroscopic info
 - J^{π} , E_{res} , Γ , (masses, etc...) a variety of tools at hand
 - Resonant elastic scattering: E < 10 MeV/nucleon. H_2 and He targets.
 - Better models: structure and reaction theories
- Need more checks between indirect methods and direct measurements!
- Better models/data to predict OMP, make Glauber calc, spectroscopy...

Direct methods: inverse kinematics measurements on windowless gas targets with direct detection of product (magnetic separation). E=0-5 MeV/nucleon. All nucleonic species.

K150 Beam Lines

