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Review of the Basic Types of 
Radiation
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Radiation Interactions

•
 

The operation of any detector basically 
depends on the manner in which the 
radiation interacts with the material of the 
detector

–
 

To understand the output of a detector, one 
must understand the behavior of radiation in 
different materials and the energy loss 
incurred therein
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Charged/Neutral Radiation
•

 

Charged Particulate Radiation
–

 

Fast Electrons
•

 

Beta Particles (pos. or neg.) emitted in nuclear decay
•

 

Energetic electrons from any other process

–

 

Heavy Charged Particles
•

 

All energetic ions with one atomic mass (1u) or greater
–

 

Examples are alpha particles, protons, fission products

•

 

Neutral Radiation
–

 

Electromagnetic Radiation
•

 

Includes X-rays emitted in the rearrangement of electron shells of atoms, 
and gamma rays that originate from transitions within the nucleus itself 

–

 

Neutrons
•

 

Generated in various nuclear processes 
•

 

Further divided into slow neutron and fast neutron subcategories
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Categories of Radiation

•
 

Soft Radiation
 

(Alphas or Low Energy X-rays)
–

 

Penetrate only small thicknesses of material
–

 

Source must be deposited in very thin layers (μm)
•

 

Sources that are physically thicker are subject to “self-absorption”

•
 

“Medium”
 

Radiation
 

(Beta Particles)
–

 

Generally more penetrating
–

 

Sources can be up to a few tenths of a millimeter in thickness

•
 

Hard Radiation
 

(Gamma Rays or Neutrons)
–

 

Much less affected by self-absorption
–

 

Sources can be mm or cm in dimension
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Charged Particle Radiation
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Review of  the Energy Band 
Structure

•

 

Valance Band
–

 

Holes are created when electrons 
are ‘excited’

 

enough to cross the 
energy gap and into the 
conduction band

•

 

Band Gap (Energy Gap)
–

 

No available energy levels
–

 

Width depends on temperature, 
pressure and the material 

–

 

Large enough (in a 
semiconductor) that only a few 
electrons cross to the conduction 
band by thermal energy

•

 

Conduction Band
–

 

Highest energy band
–

 

Region of free electrons
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Charged Particle Radiation
•

 

When a charged particle passes through a semiconductor many 
electron-hole pairs (information carriers) are produced along the 
tack of the particle

•

 

When radiation interacts with the material of a semiconductor, the 
energy deposited always leads to the creation of equal numbers of 
holes and electrons

–

 

True regardless of whether the host semiconductor is pure, p-type or n-

 
type.

•

 

The quantity of practical interest for detector applications is the 
average energy expanded by the primary charged particle to 
produce one electron-hole pair.

–

 

This quantity is often loosely called the ionization energy
•

 

Experimentally observed to be independent of both the energy and

 

type of 
the incident radiation
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Charge Carriers

•
 

When an electron is ‘excited’
 

from the valence band into 
the conduction band it leaves a ‘hole’

 
in the valance 

band

–

 

Referred to as ‘electron-hole pairs’
–

 

The motion of both of these charges contributes to the observed 
conductivity of the material

•
 

With no E-field, thermally created electron-hole pairs 
eventually recombine, and an equilibrium is established

–

 

The concentration of electron-hole pairs is a strong function of 
temperature

•

 

Will decrease drastically if the material is cooled.
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Motion of Charge Carriers

•
 

The electrons in the conduction band can be made to 
move under the influence of an applied E-field. The hole, 
representing a net positive charge, will also tend to move 
in an applied field, but in a direction opposite that of the 
electron

•

 

Their motion in an applied E-field generates the basic electrical 
signal received from the detector

–

 

At higher E-field values, the drift velocity increases more slowly 
with the field. Eventually a saturation velocity is reached which 
becomes independent of further increases in the E-field

•

 

Many semiconductors are operated with electric fields sufficiently 
high to result in a saturated drift velocity for the charge carriers
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Semiconductor Detectors
•

 

To reduce statistical limits on energy resolution need to increase the 
number of information carriers per pulse

–

 

Semiconductor detectors offer more carriers per pulse than any other 
commonly used detector

•

 

Main Advantage: 
–

 

Smallness of the ionization energy required ~3 eV

 

to create one carrier
•

 

As opposed to ~30 eV

 

required in gas-filled detectors

•

 

Main Disadvantage: 
–

 

Limited to small sizes and are very susceptible to radiation-induced 
damage
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n-type / p-type Semiconductors
•

 

Pure Semiconductor
–

 

The number of holes equals the number of electrons in the conduction band
–

 

This balance can be changed by introducing a small amount of impurity atoms 
which have one more or one less valence electron in their outer atomic shell

•

 

Doped Semiconductors

•

 

The n-Type Semiconductor
–

 

More conduction electrons and fewer holes than in the pure material
•

 

Donor Impurities
–

 

Electrical conductivity is determined by the flow of electrons 
•

 

Electrons are Majority Carriers, Holes are Minority Carriers.

•

 

The p-type Semiconductor
–

 

More holes and fewer electrons than in the pure material
•

 

Accepter Impurities
–

 

Electrical conductivity is determined by the holes
•

 

Hole are Majority Carriers, Electrons are Minority Carriers
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Silicon Detectors

•
 

For charged particle detection, silicon is the 
most widely used semiconductor material

•
 

Advantages
–

 
Room temperature operation

–
 

Wide Availability

•
 

Disadvantage
–

 
Relatively Small Size

•

 

Most devices are limited to surface areas of a few ten’s of 
square cm
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β
 

Detector

•
 

Continuous detector
–

 
This is 1000 μm thick 

•
 

Example spectrum
–

 
The 228Th source

•

 

Alphas
•

 

Beta Continuum
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Alpha Detector

•
 

Two-side Silicon Strip 
Detector
–

 
Thickness: 65μm 

•
 

16 Strips on each 
side
–

 
Strips are 3mm Wide 

•
 

Example of 228Th
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Neutral Radiation
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Photon Properties
•

 
Photons are invisible to our detectors

–

 

Unlike charged particles, photons can not undergo inelastic 
collisions with the atomic electrons of a material (absorber or 
detector).

•
 

A beam of photons is not degraded in energy when it 
passes through matter, it only becomes attenuated in 
intensity

–

 

Only photons which have not interacted with the material will 
pass through.

)exp()( 0 xIxI μ−=
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Photon Interactions in Matter

•
 

Three main photon interactions with 
matter: 

–
 

Photoelectric Effect
–

 
Compton Scattering

–
 

Pair Production
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Photoelectric Effect (1)
•

 
Predominate for gamma-rays of relatively low energy 
–

 

(up to several hundred keV).

•
 

Involves the absorption of the gamma-ray photon by an 
atomic electron. There is then a subsequent ejection of 
an electron from the atom.

•
 

Energy of the outgoing electron is then

.

..EBhE −= ν
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Photoelectric Effect (2)
•

 
If process is non-relativistic  
–

 

Born approximation gives

•
 

Cross-Section dependence
–

 

Proportional to Z to about 5th

 

power 
•

 
Energy Dependence
–

 

To the power of (7/2)

•
 

Higher Z materials are more favored for photoelectric 
absorption

2/72
0

54 )/(24 νφα hcmZ ephoto=Φ
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Compton Scattering
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Cross-section is the Klein-Nishina

 

formula:

•

 

Depends linearly on Z
•

 

Predominate interaction in the energy range of about 1 to 5 MeV

http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/compton.html#c1
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Pair Production
•

 

Predominate for high-energy 
gamma rays 
–

 

(above 5-10 MeV)

•

 

Photon is transformed into an 
electron-positron pair.
–

 

Minimum energy required is 
~1.02 MeV

•

 

The interaction must take 
place in the coulomb field of a 
nucleus 

•

 

Cross Section varies 
approximately as (Z^2)
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Interaction Summary
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Gamma Rays
•

 

Gamma radiation is emitted by 
excited nuclei when they 
transition to lower-lying nuclear 
levels.

–

 

Electromagnetic Radiation of 
the shortest wavelengths 
(below about 10 pm) and 
highest energy

•

 

Consist of high energy photons 
with energies above 100 keV

•

 

More penetrating then alpha or 
beta particles
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What Gamma Rays Tell Us
•

 

One of the primary ways to learn about the structure of excited nuclear 
states.

•

 

Spectra give energies and intensities of the transitions.

•

 

Coincidence measurements give info about how transitions might be 
arranged among the excited states.

•

 

Internal conversion coefficients can give info on the character of the 
radiation and the relative spins and parities of the initial and

 

final states. 

–

 

Angular distribution and correlation measurements also help in this area

•

 

Absolute transition probabilities can be found from the half-lives of the levels
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Germanium Detectors

•
 

Advantages
–

 
Good energy resolution for gamma-rays 
above several hundred keV

•
 

Few tenths of a percent (compared to 5-10% of 
NaI)

•
 

Disadvantages
–

 
Smaller size and lower Z give an order of 
magnitude less efficiency than NaI

–
 

Need
 

to be operated at LN2

 

temperatures 
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Ideally Large Detector

•
 

Detector is large 
enough that all 
secondary radiations 
interact within the 
detector active 
volume and none

 escape from its 
surface



29

Ideally Small Detector (1)
•

 
Small compared to the 
mean free path of the 
secondary gamma 
radiations (~1 to 2 cm).

–

 

Assuming incident gamma-

 ray energy is below the 
value at which pair 
production is significant



30

Ideally Small Detectors (2)
•

 
Now, assuming incident 
gamma-ray energy is 
several MeV
–

 

Pair production results can 
be seen in the spectrum 

•
 

Both annihilation photons 
escape without further 
interaction and a double 
escape peak

 
is seen 

~1.02 MeV
 

below the 
photopeak
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Normal Sized Detectors (1)

•
 

When pair production 
is not significant 

–
 

At energies less than 
~100 keV, the 
Compton continuum 
may effectively 
disappear
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Normal Sized Detectors (2)
•

 
When pair production 
becomes significant

•
 

When both annihilation 
photons escape  
–

 

Double escape peak. 

•
 

When one annihilation 
photon escapes (other is 
totally absorbed)
–

 

Single escape peak
•

 

appears ~0.511 MeV

 
below the photopeak
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Example Spectrum
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