

## Radiation Detection for the Beta-Delayed Alpha and Gamma Decay of <sup>20</sup>Na

#### Ellen Simmons



## <u>Contents</u>

- Introduction
  - Review of the Types of Radiation
- Charged Particle Radiation Detection
  - Review of Semiconductor Properties
  - How we will detect them in this experiment
    - Silicon Detectors
- Neutral Radiation Detection
  - Photons and their interaction with matter
  - How we will detect them in this experiment
    - Germanium Detector

# Review of the Basic Types of Radiation

#### **Radiation Interactions**

- The operation of any detector basically depends on the manner in which the radiation interacts with the material of the detector
  - To understand the output of a detector, one must understand the behavior of radiation in different materials and the energy loss incurred therein

## **Charged/Neutral Radiation**

- <u>Charged Particulate Radiation</u>
  - Fast Electrons
    - Beta Particles (pos. or neg.) emitted in nuclear decay
    - Energetic electrons from any other process
  - Heavy Charged Particles
    - All energetic ions with one atomic mass (1u) or greater
      - Examples are **alpha particles**, protons, fission products
- Neutral Radiation
  - Electromagnetic Radiation
    - Includes X-rays emitted in the rearrangement of electron shells of atoms, and gamma rays that originate from transitions within the nucleus itself
  - Neutrons
    - Generated in various nuclear processes
    - Further divided into slow neutron and fast neutron subcategories

## **Categories of Radiation**

- <u>Soft Radiation</u> (Alphas or Low Energy X-rays)
  - Penetrate only small thicknesses of material
  - Source must be deposited in very thin layers (µm)
    - Sources that are physically thicker are subject to "self-absorption"
- <u>"Medium" Radiation</u> (Beta Particles)
  - Generally more penetrating
  - Sources can be up to a few tenths of a millimeter in thickness
- Hard Radiation (Gamma Rays or Neutrons)
  - Much less affected by self-absorption
  - Sources can be mm or cm in dimension

#### **Charged Particle Radiation**

## Review of the Energy Band Structure

- Valance Band
  - Holes are created when electrons are 'excited' enough to cross the energy gap and into the conduction band
- Band Gap (Energy Gap)
  - No available energy levels
  - Width depends on temperature, pressure and the material
  - Large enough (in a semiconductor) that only a few electrons cross to the conduction band by thermal energy
- <u>Conduction Band</u>
  - Highest energy band
  - Region of free electrons



## **Charged Particle Radiation**

- When a charged particle passes through a semiconductor many electron-hole pairs (information carriers) are produced along the tack of the particle
- When radiation interacts with the material of a semiconductor, the energy deposited always leads to the creation of equal numbers of holes and electrons
  - True regardless of whether the host semiconductor is pure, p-type or ntype.
- The quantity of practical interest for detector applications is the average energy expanded by the primary charged particle to produce one electron-hole pair.
  - This quantity is often loosely called the *ionization energy* 
    - Experimentally observed to be independent of both the energy and type of the incident radiation

#### **Charge Carriers**

- When an electron is 'excited' from the valence band into the conduction band it leaves a 'hole' in the valance band
  - Referred to as 'electron-hole pairs'
  - The motion of both of these charges contributes to the observed conductivity of the material
- With no E-field, thermally created electron-hole pairs eventually recombine, and an equilibrium is established
  - The concentration of electron-hole pairs is a strong function of temperature
    - Will decrease drastically if the material is cooled.

#### Motion of Charge Carriers

- The electrons in the conduction band can be made to move under the influence of an applied E-field. The hole, representing a net positive charge, will also tend to move in an applied field, but in a direction opposite that of the electron
  - Their motion in an applied E-field generates the basic electrical signal received from the detector
  - At higher E-field values, the drift velocity increases more slowly with the field. Eventually a saturation velocity is reached which becomes independent of further increases in the E-field
    - Many semiconductors are operated with electric fields sufficiently high to result in a saturated drift velocity for the charge carriers

#### Semiconductor Detectors

- To reduce statistical limits on energy resolution need to increase the number of information carriers per pulse
  - Semiconductor detectors offer more carriers per pulse than any other commonly used detector
- Main Advantage:
  - Smallness of the ionization energy required ~3 eV to create one carrier
    - As opposed to ~30 eV required in gas-filled detectors
- <u>Main Disadvantage</u>:
  - Limited to small sizes and are very susceptible to radiation-induced damage

## n-type / p-type Semiconductors

- Pure Semiconductor
  - The number of holes equals the number of electrons in the conduction band
  - This balance can be changed by introducing a small amount of impurity atoms which have one more or one less valence electron in their outer atomic shell
    - Doped Semiconductors
- <u>The n-Type Semiconductor</u>
  - More conduction electrons and fewer holes than in the pure material
    - Donor Impurities
  - Electrical conductivity is determined by the flow of electrons
    - Electrons are Majority Carriers, Holes are Minority Carriers.
- <u>The p-type Semiconductor</u>
  - More holes and fewer electrons than in the pure material
    - Accepter Impurities
  - Electrical conductivity is determined by the holes
    - Hole are Majority Carriers, Electrons are Minority Carriers

### Silicon Detectors

 For charged particle detection, silicon is the most widely used semiconductor material

Advantages

- Room temperature operation
- Wide Availability
- Disadvantage
  - Relatively Small Size
    - Most devices are limited to surface areas of a few ten's of square cm

#### <u>β Detector</u>

- Continuous detector
  - This is 1000  $\mu m$  thick



- Example spectrum
  - The <sup>228</sup>Th source
    - Alphas
    - Beta Continuum



#### Alpha Detector

- Two-side Silicon Strip
   Detector
  - Thickness: 65µm
- 16 Strips on each side
  - Strips are 3mm Wide
- Example of <sup>228</sup>Th



#### **Neutral Radiation**

## Photon Properties

- Photons are invisible to our detectors
  - Unlike charged particles, photons can not undergo inelastic collisions with the atomic electrons of a material (absorber or detector).
- A beam of photons is not degraded in energy when it passes through matter, it only becomes attenuated in intensity

$$I(x) = I_0 \exp(-\mu x)$$

Only photons which have not interacted with the material will pass through.

## Photon Interactions in Matter

- Three main photon interactions with matter:
  - Photoelectric Effect
  - Compton Scattering
  - Pair Production

## Photoelectric Effect (1)

- Predominate for gamma-rays of relatively low energy

   (up to several hundred keV).
- Involves the absorption of the gamma-ray photon by an atomic electron. There is then a subsequent ejection of an electron from the atom.
- Energy of the outgoing electron is then

$$E = h \nu - B.E.$$

## Photoelectric Effect (2)

- If process is non-relativistic
  - Born approximation gives

$$\Phi_{photo} = 4\alpha^4 \sqrt{2} Z^5 \phi_0 (m_e c^2 / hv)^{7/2}$$

- Cross-Section dependence
  - Proportional to Z to about 5<sup>th</sup> power
- Energy Dependence
  - To the power of (7/2)
- Higher Z materials are more favored for photoelectric absorption

## **Compton Scattering**



Cross-section is the Klein-Nishina formula:

$$\frac{d\sigma}{d\Omega} = zr_0^2 \left(\frac{1}{1+\alpha(1-\cos\theta)}\right)^2 \left(\frac{1+\cos^2\theta}{2}\right) \left(1+\frac{\alpha^2(1-\cos\theta)^2}{(1+\cos^2\theta)(1+\alpha(1-\cos\theta))}\right)$$

- Depends linearly on Z
- Predominate interaction in the energy range of about 1 to 5 MeV

## Pair Production

- Predominate for high-energy gamma rays
  - (above 5-10 MeV)
- Photon is transformed into an electron-positron pair.
  - Minimum energy required is ~1.02 MeV
- The interaction must take place in the coulomb field of a nucleus
- Cross Section varies approximately as (Z<sup>2</sup>)



### **Interaction Summary**



#### Gamma Rays

- Gamma radiation is emitted by excited nuclei when they transition to lower-lying nuclear levels.
  - Electromagnetic Radiation of the shortest wavelengths (below about 10 pm) and highest energy
- Consist of high energy photons with energies above 100 keV
- More penetrating then alpha or beta particles



## What Gamma Rays Tell Us

- One of the primary ways to learn about the structure of excited nuclear states.
- Spectra give energies and intensities of the transitions.
- Coincidence measurements give info about how transitions might be arranged among the excited states.
- Internal conversion coefficients can give info on the character of the radiation and the relative spins and parities of the initial and final states.
  - Angular distribution and correlation measurements also help in this area
- Absolute transition probabilities can be found from the half-lives of the levels

## **Germanium Detectors**

- Advantages
  - Good energy resolution for gamma-rays above several hundred keV
    - Few tenths of a percent (compared to 5-10% of Nal)
- Disadvantages
  - Smaller size and lower Z give an order of magnitude less efficiency than Nal
  - Need to be operated at LN<sub>2</sub> temperatures

## **Ideally Large Detector**

 Detector is large enough that all secondary radiations interact within the detector active volume and none escape from its surface



## Ideally Small Detector (1)

 Small compared to the mean free path of the secondary gamma radiations (~1 to 2 cm).

> Assuming incident gammaray energy is below the value at which pair production is significant



## Ideally Small Detectors (2)

- Now, assuming incident gamma-ray energy is several MeV
  - Pair production results can be seen in the spectrum
- Both annihilation photons escape without further interaction and a <u>double</u> <u>escape peak</u> is seen ~1.02 MeV below the photopeak



## Normal Sized Detectors (1)

 When pair production is not significant

> At energies less than ~100 keV, the Compton continuum may effectively disappear



## Normal Sized Detectors (2)

- When pair production becomes significant
- When both annihilation photons escape
  - Double escape peak.
- When one annihilation photon escapes (other is totally absorbed)
  - Single escape peak
    - appears ~0.511 MeV below the photopeak



## Example Spectrum



#### <u>References</u>

- G. F. Knoll *Radiation Detection and Measurement* (John Wiley & Sons, Inc 2000)
- W. R. Leo *Techniques for Nuclear and Particle Physics Experiments* (Springer-Verlag 1987)
- R. D Evans *The Atomic Nucleus* (McGraw-Hill, Inc 1955)