MARS: Momentum Achromat Recoil Spectrometer

Part 2

Alexandra Spiridon

June 23rd, 2009

Cyclotron Institute

Momentum Achromat Recoil Spectrometer

Target ²⁷AI (30.0 MeV/u) + H2 (100000 µm); Settings on ²⁸Si; Config: MMDSMDNCSMM dp/p=3.85%; Brho(Tm): 1.3637, 1.3637 with out charge states sum of reactions x'angular l x space OU Momentum OC 23Mg:100.0% 23 Mg:100.0% 2.6e+5 6.5e+5 4.5e+7 23Mg 2.2e+5 5.5e+5 Lise+5 1.8e+5 1.4e+5 1.4e+5 1e+5 3.5e+7 (uu 3.5e+5 2.5e+5 Aield (pps//mL/sdd) 2651:100.0% 26SI:100.0% 2.5e+5 1e+5 1.5e+7 6e+4 1.5e+5 27SI 5e+6 27SI:100.0% 27SI:100.0% 2e+4 5e+4 25AI:100.0% 25AI:100.0% 2541 5 -1.65e+0 -24 -20 -16 -12 -8 .4 0 4 8 12 16 20 -3 1.28 1.32 1.36 1.4 1.44 1.48 1.52 1.58 .7 -5 -1 3 Angle (mrad) X (mm) Brho (Tm) 3.66e+5 y'angular l y space OU Energy OC h 1.3e+6 23 Mg:100.0% 2.6e+5 23Mg:100.0% 2.6e+6 2651 李旗口 1.1e+6 2.2e+5 2.2e+6 (bps/mrad) 1.8e+5 1.4e+5 1.4e+5 1e+5 Yield (pps/(MeV/u)) 9e+5 Yield (pps/mm) 1.8e+6 2651100.0% 2651:100.0% 7e+5 .4e+6 5e+5 1e+6 3e+5 6e+4 6e+5 2751 2751:100.0% 27SI:100.0% 1e+5 2e+4 2e+5 25A1 25AI:100.0% 25AI:100.0% 26 28 -24 -20 17-06-2009 09:51:29 -16 -12 -8 -4 0 4 8 12 16 20 -1.8 -1.4 -1 -0.6 -0.2 0.2 0.6 1 14 22 23 24 25 27 29 30 34 Energy (MeV/u) LISE++ C. Program Files LISE of les MARS_ Les Angle (mrad) SI. bol Y (mm)

June 23rd, 2009

June 23rd, 2009

6

Momentum Achromat Recoil Spectrometer

Wien Filter-Y space

²⁷Al (30.0 MeV/u) + H2 (100000 μm); Settings on ²⁶Si; Config: MMDSMDNCSMM dp/p=3.85% ; Brho(Tm): 1.3637, 1.3637

June 23rd, 2009

D3-Yspace ²⁷Al (30.0 MeV/u) + H2 (100000 μm); Settings on ²⁸Si; Config: MMDSMDNCSMM dp/p=3.85% ; Brho(Tm): 1.3637, 1.3637

June 23rd, 2009

June 23rd, 2009

Okaaay...so now what?

Example –RUN1107: β-delayed p-decay of ³¹Cl

Purity: > 85 % (at target det) Intensity: ~ 2-3000 pps Difficult - pure & intense 31Cl Primary beam ³²S @ 40A MeV – K500 Cyclotron Primary target LN₂ cooled H₂ gas p=2 atm Secondary beam ³¹Cl @ 34 A MeV

MARS Settings – Marsinator II

Primary beam settings

Secondary beam settings

Production and separation of ³¹Cl

- Check beam from cyclotron on viewer centered
- Set MARS for primary beam used values found with Marsinator
- Close coffin slits and adjust D₁₂ to find and center the beam found at D₁₂=765.7A

(D_{12-calc}=785.7A)

- Set MARS for secondary beam used values found with Marsinator
- Find FC position in coffin for maximum primary beam intensity – found at 190cm

Implantation of ³¹Cl - steps

31Cl β-delayed p-decay

20

Momentum Achromat Recoil Separator

In-flight RB production

(p,2n) reaction

June 23rd, 2009

MARS Settings – Marsinator II

Primary beam

Secondary beam

Production and separation of ²⁰Na - steps

- Check beam from cyclotron on viewer make sure it's centered, if not adjust BLD1
- Set MARS for primary beam use values found with Marsinator
- Close coffin slits and adjust D₁₂ to find and center the beam start at D_{12-calc}=586.1A
- Set MARS for secondary beam use values found with Marsinator
- Find FC position in coffin for maximum primary beam intensity
- Position calibration for target detector

- D₃ scan identify ions and set for ²⁰Na start from D_{3calc} = 135.6A
- S4 fully open Particle Identification
- Close S4 as much as possible M/q selection
- D₁₂ scan maximize ²⁰Na production and try to center start from D_{12calc}=510.4A
- Q₄-Q₅ scan improve focusing (x and y) Q_{4calc}=-50.3A and Q_{5calc}=73.9A
- Another D_3 scan to bring ²⁰Na closer to y=0 if needed
- Close slits more if there are impurities that can still be filtered
- Measure production rate and purity of the beam

Implantation of ²⁰Na - steps

Expected ...

- ²⁰Na (T_{1/2}=448ms) is a known β-delayed α–emitter: 2.148, 3.801 and 4.894 MeV
- Implanted in β-det would give an instructive α+β spectrum (as in top fig, from Run0507)
- Implanted in the thin p-det, would show better resolution for α peaks (less β energy loss), like in lower figure
- Is βγ emitter too: we will have a gamma-ray spectrum measured with Ge detector

