BASICS OF NUCLEAR CHEMISTRY

Alyssa Dibidad Texas A&M University Cyclotron Institute REU

> 3rd year Biochemistry Student Florida A&M University Tallahassee, FL

CONTENT

- What is Chemistry?
- The Basics
 - The Atom and Atomic Structure
 - Elements and the Periodic Table
- What is Nuclear Chemistry?
- Radioactivity
 - Isotopes and the Chart of the Nuclides

• Decays

- Alpha, Beta, and Gamma
- Half-life
- What we do at the Cyclotron

WHAT IS CHEMISTRY?

- Chemistry is the study of matter and the changes that it can undergo
- Matter is anything that has mass and takes up space
- Can be made up of pure or a mixture of pure substances in any state
- The smallest unit of matter is the atom

Lithium Atom

CHEMISTRY - THE CENTRAL SCIENCE

 The goal of chemistry is to understand atomic and molecular interactions - both naturally and synthetically

REGIONS OF THE ATOM

SUBATOMIC PARTICLES

Protons

- Symbol
 - p⁺
- Charge
 - +1
- Relative Mass
 - 1
- Actual Mass
 - 1.67 x 10⁻²⁴

Neutrons

- Symbol • n⁰
- Charge
 - 0
- Relative Mass
 - 1
- Actual Mass
 - 1.67 x 10⁻²⁴

Electrons

- Symbol
 - e
- Charge
 - -1
- Relative Mass
 - 1/1840
- Actual Mass
 - 9.11 x 10⁻²⁸

ALUMINUM ATOM

HOW WE TELL ATOMS APART

- Atoms differ depending upon the number of protons in the nucleus and as they are discovered, they are named and become elements
- Each element is given an atomic number which corresponds with its proton number
- They are now organized by increasing atomic number in the Periodic Table of Elements

PERIODIC TABLE

1 1 1 3	A H	IIA 4	1	F	,ei	rio	di	c 7	Га	ble	Э		IIIA	IVA	VA I 7	VIA	VIIA	0 2 He	
² Ľ	Li	Ве	of Elements										B	Ċ	N	Ō	F	Ne	
) <mark> 1</mark> N	ła	12 Mg	ШВ	IVB	٧B	VIB	VIIB		— VII -		IB	IB	13 AI	14 Si	15 P	16 S	17 CI	18 Ar	
19 •) K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
5 <mark>37</mark> R	۶b	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe	
55 C	>s	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
87 F	Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 106	107 107	108 1 0 8	109 1 0 9	110 110									
Lan Seri	itha ies	nide	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 TD	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu]		
Actir	nide	e	90 Th	91 Pa	92 U	93 ND	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Em	101 Md	102 No	103			
						— L	eger	nd - c	lick	to fin	d ou	t mo	re						
Η-	ga	S		Li - solid								Br - liquid T					c - synthetic		
Non-Metals						Transition Metals						Rare Earth Metals					Halogens		
	Alkali Metals					Alkali Earth Metals					Other Metals					Inert Elema			

WHAT IS NUCLEAR CHEMISTRY?

 Nuclear Chemistry is the division dealing with the atomic nucleus, radioactivity, and nuclear reactions

 Radioactivity - the spontaneous emission of a stream of particles or electromagnetic rays in nuclear decay

Any atom with 84 or more protons is radioactive Radiation Radioactive Atom Particle

Atomic Mass = Proton Number + Neutron Number

Aluminum: 13 p⁺, 13 e⁻, 14 n⁰

27 Al

• Atoms of the same element may have different neutron numbers, thus different mass numbers

6 electrons, 6 protons, 6 neutrons

Carbon-14

6 electrons, 6 protons, 8 neutrons

CHART OF THE NUCLIDES

 We organize all the known isotopes of the elements into another chart, called the Chart of the Nuclides Chart of the Nuclides

Symmetric: Equal numbers of protons and neutrons Asymmetric: Unequal numbers of protons and neutrons

CHART OF THE NUCLIDES

NUCLEAR REACTIONS

- Nuclear reactions involve changes in an atom's nucleus
- Isotopes with an unstable nucleus are radioactive and will spontaneously undergo a nuclear reaction
- A stable isotope will not spontaneously undergo a nuclear reaction
- Different isotopes undergo different types of changes

- A nucleus will gain or lose protons and/or neutrons
- High energy particles or electromagnetic radiation will be given off
- The new atom may be stable or radioactive
- Several types of reactions

TYPES OF RADIATION

Alpha Particles

- Made up of 2 protons & 2 neutrons, the nucleus of a He atom (2+ charge)
- Can emit from a radioactive atom
- Symbolized as α

Beta Particles

- 2 types of beta decay w. 2 types of particles
- Fast moving electrons
- Symbolized as β

Gamma Rays

- High energy electromagnetic radiation from an excited nucleus
- No mass and no charge
- Symbolized as γ

RADIATION POWER

PENETRATING POWER OF THREE TYPES OF RADIATION

- \odot When a nucleus undergoes α decay, it loses 2 protons and 2 neutrons
- A new element is produced, with an atomic number 2 less than and an atomic mass 4 less than the original

$$^{A}_{Z}X \rightarrow ^{4}_{2}\alpha + ^{A-4}_{Z-2}Y$$

 $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}\alpha$

• There are 2 types of Beta Decay

- β⁻ decay
- β⁺ decay also called positron emission
- \odot In B⁻ decay, a neutron decomposes into a proton and a beta particle
- In β⁺ decay a proton is converted to a neutron and a positron

BETA NEGATIVE DECAY

- Occurs when there are too many neutrons
- A neutron decomposes into a proton, antineutrino, and a beta particle (electron)

Carbon-14 into Nitrogen-14

BETA POSITIVE DECAY

- Occurs when there are too many protons
- A proton is converted to a neutron, neutrino, and a positron (a positive electron)

GAMMA RAY EMISSION

- Emission of high energy electromagnetic radiation from an excited nucleus
- Often occurs with alpha or beta decay as a way to release energy

DECAY SCHEMES

Figure 49.2 Decay scheme of Cs-137. Most of the cesium-137 (Cs-137) nuclei (94%) decay to an excited state of barium-137 (137 Ba*), which then gamma decays to a stable state.

DECAY SCHEMES

DECAY SCHEMES

WHAT DO WE DO AT THE CYCLOTRON?

The Cyclotron is a particle accelerator

- Accelerates charged particles using a high-frequency, alternating voltage, and a magnetic field
- The Cyclotron produces a beam of particles that we can use to shoot at other particles to create and study isotopes and measure decays

K500 SUPERCONDUCTING CYCLOTRON

TAMU CYCLOTRON INSTITUTE

REFERENCES

- Brown, Theodore L., H. Eugene, Jr. LeMay, and Bruce E. Bursten. *Chemistry: The Central Science*. Upper Saddle River, NJ: Pearson, Prentice Hall, 2006.
- Ferbel, A. Das and T. *Introduction to Nuclear and Particle Physics.* New Jersey: World Scientific, 2003.
- Koutroulis. "Introduction to Nuclear Chemistry." 2006. http://faculty.riohondo.edu/mkoutroulis/chem110/N otes/Introduction%20to%20Nuclear%20Chemistry%20N otes.pdf (accessed June 30, 2009).
- Nuclear Chemistry. 2009. http://www.wiziq.com/tutorial/17899-Nuclearchemistry-presentation (accessed June 30, 2009).