Decay Detector For The Study of Isoscalar Giant Monopole Resonances

Caleigh Samuels, Radford University
2009 Cyclotron Institute REU
Advisors: Dr. Dave Youngblood, Dr. Yiu-Wing Lui

Giant Resonances

- Collective excitations of the nuclei
- Discovered in the 1940s while bombarding nuclei with gamma rays
- Monopole resonance is a spherical oscillation
- Isoscalar – neutrons and protons move in phase with one another
- Isovector – neutrons and protons move out of phase with one another

Purpose

- From studying the Isoscalar Giant Monopole Resonance (ISGMR), E_{GMR} can be determined
- E_{GMR} can be used to find K_{em}, a main component in the nuclear matter equation of state
- Astrophysics:
 - Supernova collapse
 - Neutron Stars

Decay Detector

- Composed of a layer of horizontal 1 mm thick scintillator strips followed by a layer of vertical 1 mm thick scintillator strips in front of 5 block scintillators

Predicting Light Output

- Two methods for predicting the light output
 - Birks semi-empirical formula:
 \[\frac{dE}{dx} = \frac{C_d}{1 + C_l} \frac{dE}{dx} \]
 - C_d is the proportion of the molecules that contribute to the light output
 - C_l is the proportion of molecules that are quenching sites
- Energy Deposition By Secondary Electrons (EDSE) Model:
 - Advantageous for calibrations across numerous ion types
 - Takes into account both ionization density and energy transport concepts
 - Assumes that there exists a "quenching density," \(\rho_q \) which defines a "quenching radius," \(r_q \)
 - Below \(r_q \), the scintillator response is assumed to be constant
 - Above \(r_q \), the specific detector response, \(dL/dx \)

Experimental Setup

- Decay particles will hit the decay detector
- Remaining particles will go on to the MDM spectrometer

Stopping Power

- Stopping power is the energy loss per unit length (dE/dx)
- Commonly approximated by the Bethe-Bloch formula
 \[\frac{dE}{dx} = 2 \frac{m_e c^2 \gamma}{\beta^2} \ln \left(\frac{2m_e c^2 \gamma W_{max}}{\beta^2} \right) - 2\beta^2 - \frac{3}{2} \frac{C_d}{C_l} \]
 - More convenient form is
 \[\frac{dE}{dx} = \frac{Z^2}{m} \left(1 + \mu \right) \left(e + \varepsilon \right) \]
 - \(\kappa, \mu, \) and \(\varepsilon \) are medium dependent constants that we fit to SRIM table data
 - For our purposes, \(e \) is equivalent to \(\beta \)

Acknowledgements

Thank you to Dr. Youngblood and Dr. Lui for their guidance during this project, the Cyclotron Institute and Dr. Yennello for hosting the REU program, NSF for funding this opportunity, Robert Polis for guiding me through the first few weeks, and a special thanks to Jon Button for all of the extra time he put into helping me this summer.