Why is MARS useful?

MARS measures the ANC for $^{12}\text{N} \rightarrow ^{13}\text{C} + p$, and the S-factor and reaction rate are calculated.

How Does MARS Work?

MARS works by inverse kinematics and provides the following optical elements: Dipoles (3), Quadrupoles (5), Sextupoles (2), a Velocity Filter and Filtration Slits (4).

My Research on MARS

The Calibration of the MARS Detector used a five finger mask with each finger spaced 10 mm apart. After calibration the resolution of the detector at FWHM was 0.96 mm.

MARS data improves on S-factor measured by GANIL, showing a higher reaction rate than previously determined.

Beta Decay Application:

Uses Purified Radioactive Beams to determine half-lives and branching ratios.

The half-life and branching ratio for ^{62}Ga are determined to improve the value of the weak coupling constant for up-down quarks.

MARS was partially disassembled in early March 2004 so repairs could be made to a cooling coil in the Velocity Filter’s magnet.

Each element of MARS after Dipole-2 had to be removed. After repairs, each element was put back in place and realigned using a transit system and previously aligned points.

After focusing, the final beam consists of more than 99% of our desired nucleus, ^{13}N.

MARS was partially disassembled in early March 2004 so repairs could be made to a cooling coil in the Velocity Filter’s magnet.

Special thanks to the Cyclotron Institute at Texas A&M, along with the D.O.E. and National Science Foundation Grant PHY-0354098.