One of the most important questions that nuclear physics is trying to address is the origin and abundance of the elements in the universe. Proton-gamma capture reactions, $X(p, \gamma)Y$, play an important role in the creation of elements in processes like X-ray bursts or novae explosions [1-3]. The main focus of this work is the reaction $^{34}_{\text{g,m}}\text{Cl}(p, \gamma)^{35}\text{Ar}$. In novae, production of ^{34}S depends on the amount of ^{34}Cl which β-decays into ^{34}S with a half-life $T_{1/2}=1.5266$ s. Sulfur isotopic ratios can be used for classification of presolar grains which can be found in the meteorites. One way to destroy ^{34}Cl is the reaction $^{34}_{\text{g,m}}\text{Cl}(p, \gamma)^{35}\text{Ar}$. The rate of this reaction will eventually determine how much ^{34}Cl will be left for the creation of ^{34}S. To be able to accurately predict the reaction rate of $^{34}_{\text{g,m}}\text{Cl}(p, \gamma)^{35}\text{Ar}$, one needs to know the resonances in ^{35}Ar, including their energy, spin-parity, and proton width. We chose to study this reaction

FIG. 1. A proton spectrum obtained in the AstroBoxII following β-decay of ^{35}K.

R. Chyzh, A. Saastamoinen, B. Roeder, and R.E. Tribble
by means of an indirect method where we populate states in 35Ar just above proton threshold S_p and observe them decaying into the ground level of 34Cl + proton. Therefore detection of low energy protons becomes a challenge. The AstroBoxII was built to address this problem [4] [6]. To test our system, an experiment was conducted in March 2017. A beam of 36Ar at 36 MeV/u was obtained from the K500 cyclotron. In the target chamber of MARS [5] an H$_2$ gas target was used. Through the reaction 1H(36Ar, 35K)2n we created a secondary beam of 35K was made and then implanted into the AstroBoxII. After doing gain matching for the AstroBoxII anode pads, two HPGe detectors were calibrated with 137Cs and 152Eu sources. The estimated production rate for 35K was 2.77 event/nC. An Al degrader (13 mil) on a rotary mechanism was used to control the position for the implantation of 35K in the AstroBoxII. Due to a number of technical issues the beam time was very limited with only about 6 hours of data available. Nonetheless a proton spectrum was obtained (Fig 1.) and it is in good agreement with a similar spectrum that was obtained in 2014, but with the silicon detectors instead of the AstroBoxII.