Equation of state for strongly coupled systems with emerging bound states

Shuai Y.F. Liu and Ralf Rapp

The interplay of bound and continuum states is a key feature in a wide variety of quantum many-body systems, e.g., in cold atomic gases, electromagnetic and electron-hole plasmas, nuclear matter, and its transition to the quark-gluon plasma (QGP). A microscopic description of their equation of state (EoS) becomes particularly challenging when a strong coupling between the constituents mandates methods beyond the quasi-particle approximation. One such method is the Luttinger-Ward-Baym (LWB) formalism [1-3],

$$\Omega(G) = \mp \text{Tr} \{ \ln(-G^{-1}) + (G_0^{-1} - G^{-1})G \} \pm \Phi(G)$$

where the grand potential is evaluated in terms of Feynman diagrams with fully dressed in-medium single-particle propagators, G. The predictive power of this formalism hinges on including the relevant diagrams in the calculation of the Luttinger-Ward functional (LWF), $\Phi(G)$. Typically, $\Phi(G)$ is constructed to finite order in the \``skeleton diagram\” expansion, from which the integral equation for G should be solved self-consistently. However, for strongly coupled systems non-perturbative resummation for $\Phi(G)$ is required. In our recent work [4-5], we developed a resummation method to evaluate the $\Phi(G)$ non-perturbatively via a generalized T-matrix formalism [5],

$$\Phi(G) = -\frac{1}{2} \int d^4\bar{p} \text{Tr} \left\{ \text{Log} \left(1 - VGG(\bar{p}) \right) \right\}$$

Here, Log denotes a matrix-logarithm operation, and V and G are matrices in energy and momentum space after discretization of the interaction kernel V and propagator G. By self-consistently solving for the propagators G, we can calculate the EoS non-perturbatively including both in-medium bound and 1-particle states systematically.

FIG. 1. Evolution of the pressure in the self-consistent iteration procedure (left panel), and temperature dependence of quark and gluon masses (middle panel) needed to fit lQCD data [7] for the scaled pressure, P/T^4 (right panel).
We apply this method to evaluate the EoS of QGP. The starting point is an effective Hamiltonian where the interaction V is constrained by the static quark-antiquark free energy as computed in lattice QCD (lQCD) [6]. Tuning two fit parameters (the light parton masses), the EoS obtained through our approach can describe the lQCD data as shown in Fig.1; in the right panel, the LWF Φ contribution to the EoS, which encodes dynamical bound/resonance states, is found to dominate the pressure when the temperature approaches the pseudo-critical one. The resonance interactions, in turn, strongly distort the single-parton spectral functions, see Fig.2, which is a prediction of the approach.

[Graphs showing spectral functions for quarks and gluons at different temperatures]

FIG. 2. In-medium spectral functions for quarks (left two panels) and gluons (right two panels) at $T = 194$ MeV and $T = 400$ MeV for 3-momenta $p = 0, 1, 2, 3$ GeV.

The spectral functions are broad and non-quasiparticle like at low momenta and low temperatures while they recover quasi-particle structures at high momenta and/or temperatures. This is a direct reflection of the remnants of the strong confining force in QCD at low energy scales and asymptotic freedom at high energy scales, as encoded in the potential V. The pertinent 2-particle T-matrices are shown in Fig. 3 in attractive channels, illustrating strong resonances at low temperature and their dissolution at higher temperatures.

In summary, utilizing a newly developed many-body method, we have unraveled a strongly coupled picture of QGP near the transition region where quantum effects play a key role: as the pseudocritical temperature is approached from above, broad single-parton spectral functions give way to dynamically formed bound states, driven by the confining force as constrained by lattice QCD.
FIG. 3. Imaginary part of the in-medium T-matrix for $P = 0$ in the color-singlet $q\bar{q}$ (left) and gg (right) channels.