MARS status report for 2014-2015

B.T. Roeder, A. Saastamoinen, and A. Spiridon

This year we produced and separated several radioactive beams for the physics program at the Cyclotron Institute at Texas A&M University with the Momentum Achromat Recoil Separator (MARS) [1]. Some of the beams in this report were developed during previous years [2]. A new, low energy 16N beam was also developed (see below in section IV).

I. Production of radioactive beams for superallowed β-decay measurements

During 2014-2015, we tuned several radioactive beams with MARS for the group of Prof. J.C. Hardy with the $(p, 2n)$ fusion-evaporation reaction. Nearly pure beams of 30S, 26Si, and 34Ar were produced. These beams were needed as part of Prof. Hardy’s research group’s continuing studies of the lifetime and branching ratios for superallowed β-decays.

The 30S beam was produced with the $(^{31}$P, 30S)2n reaction. A primary beam of 31P$^{10+}$ at 30 MeV/u from the K500 cyclotron bombarded the MARS gas cell target to produce the 30S. The target was filled with 2 atm of H$_2$ gas cooled to 77K. After optimizing the tune of MARS, we obtained 90 eV/nC, or about 18,000 particles/sec of 30S at the end of MARS with the full primary beam intensity. The total impurity rate was about 1.3%, with the main contribution coming from 27Si at about 0.4%.

The 26Si beam was produced with the $(^{27}$Al, 26Si)2n reaction. A primary beam of 27Al$^{8+}$ at 30 MeV/u from the K500 cyclotron bombarded the MARS gas cell target to produce the 26Si. The target was filled with 2 atm of H$_2$ gas cooled to 77K. After optimizing the tune of MARS, we obtained 240 eV/nC, or about 22,000 particles/sec of 26Si at the end of MARS with the full primary beam intensity. The total impurity rate was about 1.6%, with the main contribution coming from 23Mg at about 0.8%.

The 34Ar beam was produced with the $(^{35}$Cl, 34Ar)2n reaction. A primary beam of 35Cl at 30 MeV/u from the K500 cyclotron bombarded the MARS gas cell target to produce the 34Ar. The target was filled with 2 atm of H$_2$ gas cooled to 77K. After optimizing the tune of MARS, we obtained 51 eV/nC, or about 20,400 particles/sec of 34Ar at the end of MARS with the full primary beam intensity. The total impurity rate was about 1.1%, with the main contribution coming from 31S at about 0.2%.

II. 35K secondary beam

In March 2014, we produced and separated 35K with MARS [2]. Following this successful test run, the 35K β-delayed proton decay experiment was conducted in June 2014. Details of the measurement are given in a separate report [3]. For this measurement, the 35K was produced with the fusion-evaporation reaction $(p, 2n)$ in inverse kinematics with 36Ar primary beam at 36 MeV/u. Hydrogen gas at a pressure of 2 atm and at a temperature of 77K was used in the MARS gas cell target.

In the experiment, the 35K secondary beam was slowed down and implanted into a thin silicon strip detector that is only ~45 µm thick. Thus, the 35K secondary beam must have a small momentum spread such that all the nuclei produced are implanted into the detector. For the 35K production test, we set
the MARS momentum slits (the “coffin slits”) to ± 0.5 cm, which corresponds to a momentum spread of the secondary beam of $\Delta P/P \approx \pm 0.3\%$. With this momentum slit setting, we produced ^{35}K at a rate of about 3.0 events/nC. This gave a rate of about 450 particles/sec for the ^{35}K (using 150 nA of ^{36}Ar primary beam) with about 40% impurities. The largest impurity contribution came from ^{32}Cl, but this did not significantly affect the experiment. The ΔE vs. Y-position spectrum on the MARS target detector showing the resulting secondary beam for the ^{35}K is shown in Fig. 1.

![Figure 1: Results of the ^{35}K MARS tuning for the June 2014 experiment.](image)

III. ^{9}C secondary beam

Also in March 2014, we produced and separated ^{9}C with MARS [2]. ^{9}C was needed by the group of Prof. G. Rogachev for their experiment with resonant elastic proton scattering using the Thick Target Inverse Kinematics (TTIK) method. The ^{9}C secondary beam was employed to study the unbound ^{10}N nucleus. The experiment was conducted in October 2014.

For the ^{9}C experiment, a ^{10}B primary beam at 31 MeV/u bombarded the MARS gas cell target. The gas cell target was filled with 3 atm of hydrogen gas at a temperature of 77K. The ^{9}C was produced with the fusion-evaporation reaction ($\text{p},2\text{n}$) in inverse kinematics. The Q-value for the $\text{p}^{(10}\text{B},^{9}\text{C})2\text{n}$ reaction is -25.7 MeV. Thus, 31 MeV/u was chosen for the primary beam energy as a compromise.
between the production rate for 9C, which is better at higher primary beam energies, and the desire to have the 9C at the lowest possible energy. For the experiment, the 9C energy was reduced to ~11 MeV/u with degraders and a thick scintillator foil at the entrance of their scattering chamber.

The optimized production rate for the 9C secondary beam was about 7.0 events/nC with the 3 atm of gas in the target, which gave ~about 1.4 x 10^3 particles/sec with 200 nA of 10B beam on target. The 9C secondary beam was relatively pure, although there was some contamination in the beam from α-particles and 3He. Some of this contamination from the α-particles was removed in the experiment by closing the slits of MARS. The resulting 9C secondary beam as measured by the MARS target detector is shown in Fig. 2.

![MARS Target Det. ΔE vs. Y - 10B+1H $\rightarrow ^9$C](image)

FIG. 2. Result of the 9C production with MARS. The main contaminant of the secondary beam is from 3He.

IV. Production of 16N secondary beam

16N secondary beam was produced with MARS at low energy in preparation for upcoming experiments to study the pionic fusion reaction mechanism with Prof. Yennello’s group.
In the test, a 15N$^{2+}$ primary beam at 7 MeV/u from the K500 cyclotron bombarded the MARS gas cell target. The gas cell was filled with 2H$_2$ (deuterium) gas at a pressure of 948 torr and a temperature of 77K. The reaction 15N(15N,1H)p was used to produce the 16N. However, 16O was also produced with high cross section at this energy from the 15N(15N,1H)n reaction. It is possible for the 16O ions to be produced in other charge states besides 16O$^{8+}$. Thus if 16O$^{7+}$ is produced, it is indistinguishable from 16N$^{7+}$ in MARS unless a thin silicon detector or degrader foil is employed to separate the two secondary beams by their different energy losses in the materials. Since a thin silicon detector was not available for the experiment, a thin Al degrader foil with areal density 4.4 mg/cm2 was inserted in front of the MARS target detector. To optimize the production of 16N$^{7+}$ vs. 16O$^{7+}$, the MARS magnet settings were kept constant (D1-2 = 255.2 A, or $B\rho = 0.60$ T*m) while the gas cell pressure was varied from 1220 torr to 777 torr in steps of about 50 torr. We found the optimized 16N$^{7+}$ production with 948 torr, 16O$^{7+}$ at 832 torr, and some mixture of the two elements at the settings in-between.

Depending on the MARS quadrupole settings used, the production rate for 16N$^{7+}$ varied between 900 events/nC and 2200 events/nC. With ~100 nA of primary beam on target, this implies that production rates of greater than 10^5 particles/sec are available for this beam at this energy. This relatively intense 16N beam may be employed in future nuclear astrophysics experiments.