Observations from evaporation residue cross sections in 45Sc- and 44Ca-induced reactions

Recent measurements of evaporation residue (EvR) cross sections [1-3] for nuclei near the N = 126 shell have emphasized the importance of collective enhancements to the level density (CELD) for spherical ground-state nuclei and may have relevance for new superheavy element (SHE) synthesis. The study of 45Sc-induced reactions on lanthanide targets [3] revealed that proton evaporation competed effectively with neutron evaporation from the compound nuclei (CN) that were produced. The γn cross sections of 45Sc-induced reactions were also three or more orders of magnitude smaller than cross sections of 48Ca-induced reactions on the same targets due to the relative neutron deficiency of 45Sc.

In the last year, we bombarded 156,157,159Gd targets with 45Sc projectiles and 158Gd, 159Tb, and 162Dy targets with 44Ca projectiles as part of a systematic study to produce CN near the N = 126 shell. The beams of 45Sc$^{6+}$ and 44Ca$^{6+}$ were provided from the K500 cyclotron, and the unreacted beam and other unwanted reaction products were separated using the Momentum Achromat Recoil Spectrometer (MARS) [4]. Full experimental details are given in Refs. [1, 5].

Combined with previous results, reactions of 45Sc + $^{156-158,160}$Gd have now been studied and $4n$ cross sections are shown in Fig. 1. As expected, the $4n$ cross sections decrease as the neutron number in the target decreases. As the CN become more neutron-deficient, the fission

![Graph showing $4n$ and $3n$ cross sections](image)

FIG. 1. (a) $4n$ and (b) $3n$ cross sections for 45Sc-induced reactions on $^{156-158,160}$Gd targets. Symbols indicate experimental data and solid lines indicate theoretical calculations.
barriers decrease and the neutron binding energies increase, leading to a higher probability of fission. 44Ca is of interest because it is only one proton removed from 45Sc (both are $N = 24$ nuclei). Cross sections for the reactions of 44Ca on lanthanide targets are approximately two orders of magnitude larger than for reactions of 45Sc on the same targets as shown in Fig. 2. The $pn\pi$ cross sections in the 44Ca-induced reactions are also larger than in the 45Sc-induced reactions. This emphasizes the role of the extra proton in 45Sc in creating much more fissile CN which have low survival probabilities. A simple theoretical model based on Ref. [6] was developed, and the inclusion of CELD was necessary to reproduce the experimental data. This may have implications for producing SHEs near the predicted $N = 184$ spherical closed shell, as CELD may negate any possible enhancement to the $x\pi$ cross section as a result of producing CN on this shell.

Two reactions with 44Ca projectiles were cross bombardments for reactions that had been previously studied using either 48Ca or 45Sc projectiles. Cross sections for the 4π EvR of the 48Ca + 154Gd and 44Ca + 158Gd reactions which produced the 202Po CN are very similar (see Fig. 2). However, the maximum 4π EvR cross section of the 44Ca + 159Tb reaction which produced the 203At CN is approximately an order of magnitude larger than in the 45Sc + 159Sc reaction which produced the same CN. Some of this discrepancy should be accounted for by differences in the

![Graph showing cross sections for different reactions](image)
fusion probability, but we cannot rule out other effects such as pre-equilibrium emission playing a role [7].

These data demonstrate that the production of neutron-deficient heavy nuclei using 44Ca and 45Sc projectiles is relatively difficult compared to similar reactions using 48Ca projectiles reacting with the same targets.