Update on the superallowed branching ratio in the 34Ar

V.E. Iacob, J.C. Hardy, M. Bencomo, H.I. Park, L. Chen, V. Horvat, N. Nica, B.T. Roeder, and A. Saastamoinen

Last year we reported a measurement of the branching ratios in the decay of 34Ar [1]. This experiment, along with a more precise half-life value [2] is expected to yield an f_t value for the superallowed transition from 34Ar whose accuracy matches that of the well-known superallowed decays used in generating the corrected \mathcal{F} values that are instrumental in extracting V_{ud} and testing the unitarity of the CKM matrix [3].

The experiment described in Ref. [1] measured β-γ coincidences and β singles from cyclotron-produced 34Ar sources placed between a 1-mm-thick plastic scintillator (located 2.5 mm from the source) and our efficiency-calibrated HPGe detector [4] (151 mm from the source). Since then, we have analyzed the data to obtain the precise photopeak areas for all the γ rays observed (at 461, 666, 2580, and 3129 keV). The statistical uncertainties range from 0.8% to 2.5%, the higher ones being associated with the γ rays generated by the weaker β-decay branches (~1% or less).

These areas have to be corrected for losses. All observed γ rays de-excite an excited state directly to the 34Cl ground state. Any γ-cascades, if they occur at all, are too weak to be detected. Thus, true γ-ray coincidences in the HPGe detector cannot occur. However, the γ rays and the decay positrons are coincident on the timescale of our electronics and there are two mechanisms by which those positrons can generate coincident photons: (a) bremsstrahlung and (b) annihilation, either in flight or at rest. If these photons appear in the HPGe detector in coincidence with a γ ray, then the total energy recorded in the detector is increased, thus resulting in some of the γ-ray photopeak events being lost. The combined correction associated with photon losses due to true coincidences with bremsstrahlung and positron annihilation is 2.4%.

The branching ratio for the β-decay branch k, which leads to emission of a γ_k photon, can be expressed as the ratio between the β_k-γ_k coincidences and the total number of decays (or β’s). Highly simplified, this can be expressed as:

$$BR_k = \frac{N_{\beta_k \gamma_k}}{\epsilon_{\beta_k} \epsilon_{\gamma_k}} \frac{N_{\beta_{tot}}}{\langle \epsilon_{\beta} \rangle}$$

Here $N_{\beta_k \gamma_k}$ is the number of observed β_k-γ_k coincidence events (the γ_k photopeak area), $N_{\beta_{tot}}$ is the total number of observed β’s associated with the 34Ar decay, ϵ_{γ_k} is the absolute photopeak efficiency for γ_k, ϵ_{β_k} is the absolute detection efficiency for a branch-k positron in the plastic scintillator, and $\langle \epsilon_{\beta} \rangle$ is the average detection efficiency for all decay positrons in the plastic scintillator.

The parent 34Ar ($t_{1/2}=0.84$ s) decays to 34Cl, which itself is β^+-unstable ($t_{1/2}=1.53$ s). Obviously, it is only the β’s associated with the 34Ar decay alone that must be used in Eq. (1). Taking the known half-lives of the two nuclei, the measured time-profile of the 34Ar beam implantation, and the collect-move-
detect time-values, we determined that 47% of the total β singles recorded are associated with the parent decay. In addition, small corrections have to be applied to take account of beam impurities (~0.08%).

The plastic-scintillator efficiency for detecting β’s has a small dependence on the β-spectrum energy and, as a result, small corrections related to the ratio $\left(\varepsilon_\beta\right)/\varepsilon_\beta$ also must be applied. These corrections were derived from Monte Carlo calculations and range from -3% to +1%; the negative values correspond to weak β branches that populate high-energy excited states. Overall this leads to an average contribution of 0.4% to the final superallowed branching ratio since the whole decay is dominated by the ground-state branch.

Naturally, corrections are required to correct for all forms of dead time: in the singles channels and in the β-γ coincidences. Their combined contribution is 0.4%.

Last, small corrections must be applied to the results to incorporate the very small contribution from electron capture, which affects the decay branching but does not lead to β-coincident γ rays in our measured spectrum. For the branches in 34Ar decay these corrections range from 0.07% to 1.2%.

The data analysis continues.