Proton decay of excited states in 12N and 13O and the astrophysical 11C(p,γ)12N reaction rate

Using a 13O beam, we have observed proton decays of 12N and 13O excited states following proton-knockout and inelastic interactions on a 9Be target. The excited states were determined from detected two- and three-body exit channels using the invariant mass method. The width of the second excited state of 12N was determined to be 55(20) keV, considerably smaller than the value listed in the ENSDF data base. Three new excited states of narrow width (≤50 keV) were observed in 13O from the p$+^{12}$N and 2p + 11C exit channels. One of these states ($E_x = 3.67$ MeV) was found to sequentially decay to the second excited of 12N. We again found these data to be inconsistent with the listed decay width. The ramifications for the astrophysically interesting 11C(p,γ)12N reaction are given. The work has been published in Phys. Rev. C 87, 054329 (2013).