Anomalous behavior of the giant monopole resonance

D. H. Youngblood, Y. -W. Lui, J. Button, Y. Xu, M. Anders, and S. Shlomo

The energy of the giant monopole resonance (GMR) in 48Ca is higher than in 40Ca, which is not reproducible with self-consistent mean field calculations[1], and the GMR’s in both 92Zr and 92Mo are much higher in energy than predicted with mean field calculations that reproduce the energies of the GMR in the other Zr and Mo isotopes.[2] Moreover the GMR’s in all Zr and Mo isotopes studied are split into two components separated by several MeV. In the past year we have studied the GMR in 44Ca and 94Mo to further explore these issues.

Fig. 1 shows a plot of the energy of the GMRs in 40,44,48Ca vs A, and the 44Ca energy falls between the 40Ca and 48Ca energies. Also plotted are calculations using the Leptodermous expansion.

The brown squares were calculated using values for K_{NM} and K_{τ} obtained in a study of the Sn isotopes [3], and the A dependence of the GMR energy is opposite that of the data, with the GMR in 40Ca well above that in 44Ca, and the GMR in 48Ca well below that in 44Ca. Varying K_{NM} and K_{τ} to fit the data (orange triangles) results in $K_{NM}=188$ MeV and $K_{\tau}=+1200$ MeV. K_{τ} is generally accepted to be negative and roughly ~-500MeV, so the +1200MeV necessary to fit the 40,44,48Ca results is badly in disagreement. Fig. 2 shows a comparison of the Ca experimental results with three mean field calculations. The two calculations [4-5] that give an energy for 44Ca agree with the experimental results.
for 44Ca, and the Anders et al. calculation [4] shows the GMR energy in 48Ca above that for 44Ca in agreement with the data though it shows the 40Ca energy much higher than either 44Ca or 48Ca. The HF_QRPA calculation with pairing by Vesely et al. [5] shows the energy systematically decreasing as A increases, in contrast to the data. The RMF calculation by Sharma [6] shows the GMR in 48Ca below that in 40Ca.

We also studied 94Mo to complement our previous study [2] of 92,96,98,100Mo and 90,92,94Zr. The E0 strength distribution obtained (Fig. 3) is similar to those for 96,98,100Mo and 90,94Zr with a lower energy peak at $E_x \sim 16.9$MeV containing most of the strength and $\sim 20\%$ of the strength in a peak at $E_x \sim 24$MeV. The total E0 strength seen is 108\% of the E0 EWSR. The anomalous behavior of the centroid of the GMR is described in ref. [2], with those of both 92Mo and 92Zr well above values expected from mean field or Leptodermous expansion calculations. The GMR in 94Mo is well reproduced by the mean field calculations. In Figs. 4 & 5 we plot the energies of the low and high peaks separately vs A. The energies of the lower peaks have a smooth behavior for both Zr and Mo isotopes and those for Mo are well reproduced by a Leptodermous expansion calculation with $K_{NM}=210$MeV and $K_r=-750$MeV. The Zr data would require a slightly more negative K_r. The high energy peaks in the Mo isotopes are within errors at
the same energy whereas the high energy peak in 92Zr is over an MeV higher than in 94Zr and about 0.5 MeV higher than in 90Zr.

FIG. 3. E0 strength distribution for 94Mo plotted vs excitation energy.

FIG. 4. Plot of energy of the low energy E0 peaks in the Mo and Zr isotopes vs A. The uncertainties are indicated by the error bars. Also shown are Leptodermous calculations using the parameters indicated in the figure.
FIG. 5. Plot of energy of the high energy E0 peaks in the Mo and Zr isotopes vs A.